

Start here:

	Ruralwater

	Manual

	business package

..see some-label-name for more detail

Indices and tables

	Index

	Module Index

	Search Page

Ruralwater

[image: GPLv3 license] [http://perso.crans.org/besson/LICENSE.html]

Purpose of the project

Open source webapp to allow the design of rural water supplies
for non-specialists.

Motivation

This project exists because the design of rural water supplies poses
challenges to optimize the investment costs and limit the running costs.

This may be particularly interesting in the case of humanitarian
interventions (say in rural communities of Africa, Asia, Latin America),
where the funds may be limited and where personnel deployed by
humanitarian organizations may not have an engineering professional
background.

More information on
our website [https://claudiofinizio.github.io/ruralwater/] and its quickstart [https://github.com/claudiofinizio/ruralwater/blob/master/quickstart.md] (2019 version, will be updated soon).

Related

	epanet [https://www.epa.gov/water-research/epanet/]

How to install ‘ruralwater’ on your local machine

These steps will get you a copy of the project up and running
on your local machine for development and testing purposes.

Prerequisites:

	Python 3.7+

	Redis

Remark: if, for any reason, you do not want to install redis on
your local machine, then, once you have cloned the repository, edit the
following setting inside file webapp.core.settings.redis.py:
USE_REDIS = True and set it to False.

Installation:

We have created a setup script that should install ruralwater on
your local machine in a single command. If this fails, we detailed below
the manual installation process.

Once python (and optionally redis) are installed on your local machine
and you have cloned the repository, follow the steps below:

	clone the development branch on you local machine

	run the script setup_linux_complete.sh (linux) or
setup_win_complete.ps1 (windows)

	Navigate to localhost (http://127.0.0.1:8000/)

You will now see “ruralwater” up and running.

If anything went wrong, then apologise us and follow the steps below.

Manual installation

Once python (and optionally redis) are installed on your local machine
and you have cloned the repository, follow the steps below:

	clone the “development” branch on you local machine

	create and activate a virtual environment

	install the requirements at requirements/development.txt

	run the script setup_linux_database.sh (linux) or
setup_win_database.ps1 (windows)

	Navigate to localhost (http://127.0.0.1:8000/)

You will now see “ruralwater” up and running.

More specifically, setup_*_database implements
the following operations:

	generates the database (using the django framework)

	populates the database with the hydraulic hardware data

	creates a superuser and two mock users:

	‘demo’, who is the superuser, with password: pippo121

	‘cat’, with password: meow

	‘dog’, with password: bark

What is ‘hydraulic hardware’? The hydraulic hardware data are
the data of the commercially available
water pipes, and a selection of some water pumps and diesel engines
available from manufacturers. Data include bores of pipes and plate data
of pumps and engines. These data are needed since the software
algorithms needs them to run its algorithms.

Contributing

The mission of this project is stated at
our website [https://claudiofinizio.github.io/ruralwater/].

Additional information may be found in the following documents:

	XXX for an introduction to the
‘application programming interface’ exposed by the ‘business logic’

	For contributors more interested in “test-driven development”
XXX provides the description of the
tests currently included in this repository.

More documentation on the project can be found here:

Current status of the project

The project at present (october 2020) is a ‘proof of concept’.
Contributions are welcomed especially in the following fields:

	the algorithm to optimize the design of dendridic gravity-fed water supplies

	the design of the user interface, more specifically the javascript
for the client side controls to define the water supply.|

Tech/framework used

Ruralwater is built with:

	Python [http://www.python.org/]

	Django [https://www.djangoproject.com/]

	Leaflet [https://leafletjs.com/]

	Leaflet draw [https://github.com/Leaflet/Leaflet.draw/]

	Numpy [https://numpy.org/]

	Scipy [https://www.scipy.org/]

	Shapely [https://pypi.org/project/Shapely/]

	Pint [https://pint.readthedocs.io/en/stable/]

	Rest framework [https://www.django-rest-framework.org/]

Tests

If you desire to test the entire webapp, do the following:

	cd into the ‘webapp’ folder

	run: python manage.py runserver

	run: python manage.py test

Remark: it is necessary to run the server before running the tests,
as it is shown in the above code snippet, becasue the tests must access
those “hydraulic hardware data” referred to above (section hydraulic_hardware)

More information about testing may be found in the testing forlder
and specifically inside the file howto_casestudies.md.

If you desire to simply thest the ‘business logic’ (not the entire webapp),
then do the following:

	cd into the ‘webapp’ folder

	run: python manage.py runserver

	

Authors

	Claudio Finizio [https://www.linkedin.com/in/claudio-finizio-57b02542/]
(Initial work)

Manual

The hydraulic problem

Here we talk about the problem in the hydraulicn theory.
See Hydraulics to know what the water engineer must do.

The computer software algorithm

Here we talk about the computer algorithm to tackle the hydraulic theory.
See Algorithms to know what the computer scientist must do.

Hydraulics

Note: Once you have read through all the documentation,
you can then see business package

Ruralwater models two kinds of rural water supplies: “gravity” and
“from a borehole”, also known as “station” (short form for “pump station
from borehole”).

Remark in all the images in this page, the vertical dimension has

been enhaced to make it more evident all calculations based on
altimetric elevation and hydraulic energy. So, the slopes of the
pathways appear very steep, much more than the reality found walking
on the ground.

here is a pdf file pdf

[image: _images/5_pathways_overbank.svg]

What the software does

The software tackles two distinct kinds of hydraulic problems:

	the hydraulic design problem - given the required water flow,
find the pipes that will provide such water at the minimum cost

	the hydraulic check problem - given the pipes, find the water flows
and perform a control to see whether the working conditions
do not exceed the rated limits of the installed hydraulic hardware.

Gravity

The physical system

In a gravity water supply we have a water spring and a network of pipes,
shaped as a tree, which brings the water to a number of water reservoirs
at a lower elevation than the spring itself.

General concepts

The names in bold below correspond to those used by the classes
of the software.

The ‘topology’ of the water supply system

A tree represents the water supply system composed of its pathways
from the source to each water reservoir.
A pathway represents the trench along which the pipes are
laid down.

A pathway has a ‘tail end’ and a ‘head end’ and water flows
from tail to head. A pathway has an altimetric profile associated with it.

Since the pathways are laid down as the branches of a tree, then each pathway
may have ‘children’ pathways that branch off its head end.

The network is a tree; therefore water flows in a unique path
and direction towards each reservoir.

The ‘water demand’ in the water supply system

Water abstraction takes place only at the
reservoirs; indeed, we assume that the users live ‘nearby’ the reservoirs.
One may imagine that the reservoirs are placed in the centre of the various
village neighbourhoods (or near a school, near the market, near the location
where the village houses or huts are more scattered). There are no
water abstractions along the pathway. Therefore water flow along each pathway
remains constant along the pathway itself.

The ‘independent parts’ in the water supply system
(a.k.a. the ‘pressure zones’)

Let’s imagine that we have a spring that serves two villages located in
a valley, and the second village is further downstream in the valley.
In this case the topology of the water supply will be: (1) a pathway
from the spring to the ‘nearest village’ and a second pathway from the
‘nearest’ to the ‘farthest village’. In this case, all the water that
reaches the second village (the farthest) will flow through the
reservoir of the first (the closest) village. This is a common
scenario and more complex topologies could also exists, like in the
images of the tutorial, where there is a Y-shaped water supply, and
one of the reservoirs feeds another village, more far away. Remark: in
all such cases, the water reservoir behaves like a ‘spring’ for any
other pathway that abstracts water from such reservoir
and transports it further away downstream. Therefore a tree of pathways
may be split into one or more disjoint pressure zones.

From the point of view of hydraulic equations, every pathway whose
head end is a reservoir gives rise to an independent water supply system
stemming from each of its child pathways. In fact, from the point of
view of solving the hydraulic equations, a reservoir is identical to the
spring: it is “what provides water” into the “downstream” pipes
(otherwise said: it provides water into the downstream section of the
water supply). This independent system is called a pressure zone. Each
pressure zone is independent of the others and their hydraulic energy
equations are solved separately.

How water flow is controlled in the water supply system

Nothing controls the water flow better than the law of gravity. Since
we are talking about reliable solutions and intrinsic technology, with as
little maintenance as possible, we avoid using ‘gate-valves’ installed
along the pathways and then partially closed to the required amount of
water. Instead, the pipes have no gate-valves, the flow flows
continuously along the 24 hours and fills the water reservoirs. The
water flow is set by the diameters of the commercial pipes and by the
continuous flow under gravity. The next section introduces the equations
of flow under the pure force of gravity.

The equations that model the system

The gravity water supply is modelled by two kinds of equations:

	the continuity of water flows.

	the continuity of hydraulic energy.

Continuity of water flows:

For each pathway, its water flow is the sum of the water flows in
its children pathways plus the water flow, if any, required at its
head end. If such water flow at the head end exists, then the head end
is a reservoir and each of the children pathways represents the source
for a “separated” or “independent” water supply.

Continuity of hydraulic energy:

This is the law of Bernoulli. For each pathway, the hydraulic
energy at its head end is equal to the energy at the tail end minus the
hydraulic friction in the pathway due to its water flow and to the
sequence of pipes laid down along the trench.

Example

Imagine you have the following gravity water supply:

	there is a spring

	from th spring the pipeline goes to a junction where the pipe branches in two

	the two branches go to Tank1 and Tank2 respectively.

This is therefore a Y-shaped water supply, a typical configuration
where one source, the spring, must be shared by two villages or by two
water tanks at the opposite ends of a larger village.

The equations that describe this system are:

	the conservation of water flows

	the energy difference in each of the 3 branches
is the hydraulic friction in the pipes

These equations are written below:

We start with the conservation of flows:

\[\begin{eqnarray}
 Q_{Spring\rightarrow{Tee}} = Q_{Tee\rightarrow{Tank1}} + Q_{Tee\rightarrow{Tank2}}
\end{eqnarray}\]

Next comes the conservation of energy:

\[\begin{split}\begin{eqnarray}
 Z_{Spring} - kQ_{Spring\rightarrow{Tee}}^2(\sum_{j=1,...,segments} {\frac{L_j}{D^5_j}}) = H_{Tee} \\
 H_{Tee} - kQ_{Tee\rightarrow{Tank1}}^2(\sum_{j=1,...,segments} {\frac{L_j}{D^5_j}}) = Z_{Tank1} \\
 H_{Tee} - kQ_{Tee\rightarrow{Tank2}}^2(\sum_{j=1,...,segments} {\frac{L_j}{D^5_j}}) = Z_{Tank2}
\end{eqnarray}\end{split}\]

Where the symbols represent:

\(Z_{Spring}\) is the elevation of the spring

\(H_{Tee}\) is the hydraulic energy at the junction of the Y-shaped pathways

\(Z_{Tank1}\) and \(Z_{Tank2}\) are the elevations of the two water tanks where the water flows to

for each segment, \(L_j\) and \(D_j\) represent xxx and \(j\) is the index over the piped segments. A piped segment is a stretch along which the same pipe is used.

Example explaining the piped segments: Imagine to have one pathway is long 1000 meters and that we use a ‘2 inches pipe rated for 60 meters of water pressure’ (short-handed as 2”PN6 pipe) for 600 meters followed by a ‘3 inches with the same pressure rating’ (short-handed 3”PN6) in the remaining 400 meters of the pathway pathlength. Then, we have two segments and the symbols in the above sum would bear the values of:

\(L_1\) would be 600
\(D_1\) would be the internal diameter of a 2 inches pipe
\(L_2\) would be 600
\(D_2\) would be the internal diameter of a 2 inches pipe

In the ‘hydraulic design problem’ the unknowns are:
\(Q_{Spring\rightarrow{Tee}}\)
\(Q_{Tee\rightarrow{Tank1}}\)
\(Q_{Tee\rightarrow{Tank2}}\)
The known data are all the other symbols.
Therefore we have 4 equations and 4 unknowns and the system can be solved.

Check

With reference to the above equations, the hydraulic check problem is
the problem of solving the above equation, where the unknowns
are the water flows.

Design

This requires much more engineering judgement than the hydraulic check.

Let’s investigate the tree of pipes. In such condition
there is an interesting problem of economics. At each pathway, the hydraulic energy at its tail end and head end should remain close to the ground elevation so that the pressure along the pathway remains low and all the pipes may be selected from those commercial pipes belonging to the lowest rated pressure class. If this is the case then each pathway may be solved separately with the technique of the “simplex”.
 pressures.

However, real life cases may involve hilly profiles. The pathway
may cross a deep valley. This is the case when the villages are
scattered on the other flank of a valley from that were the water spring
is located. In such cases, the values of hydraulic energy at tail and head ends of the pathways must be kept “far above” the ground elevation if a head end lies in the middle of a valley that is crossed by the water supply.
In this case an interesting (and difficult)
problem of optimization arises: is is preferable to burn more hydraulic energy
through friction in the pipe sections with higher pressure rating or the
opposite? The solution depends, case by case, from the amount of water
required and from the elevation profile along the pathways. This problem
of optimization cannot be solved using the “simplex” method. In fact, it
is not a “convex problem” due to the discontinuities introduced by the
existence of both discrete diameters and discrete pressure ratings.
See :ref: algorithms_gravity_design how this translates in an algorithm.

[image: base.svg]Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

[image: _images/Y_shaped_pathways.svg]Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

[image: _images/Y_waterflow_right.svg]Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

[image: _images/Y_waterflow_left.svg]

Borehole’s station

I link with the module gravity
now i link with the class GravityDesign
and even the method solve_hydraulic_design_problem()

I want to refer to the equations (system_of_equations) and to the algorithm (the_algorithm)

We now move to the second typology of rural water supply system: a small
pumping station that connects a borehole, with a water reservoir which is far
from the borehole and usually at higher that that of the site where the
borehole is located.

We deal with two kinds of borehole stations: with and without electric power.
The reason is because this software is dedicated to rural solutions and, as
such, it must consider the case where electric power is not available.

Remark: with ‘not available’ here we mean an arrangement that works entirely
*without electric power. With ‘electricless’ we mean a solution that is not
*making use of electric power because it is preferred to have a rural plant

Where electric current is not available, it can nonetheless be produced by an
electric generator set.

However, when we speak of ‘electricless’ pumping station, we mean that the
presence of electric power is intentionally avoided (and so it is avoided to
use an electric generator) despite it can always be generated even in remote
area by a generating set. The logic is that electric power is both a difficult
subject and it introduces complexity in the hardware and the need for spare
parts.

The key point is that electric power might be tricky in a rural context.
Knowledge about how to run the maintenance of an electric pumping station is
hard and could be not available locally; perhaps the spare parts could be
difficult to find on the local market. For these reasons, this software allows
you to design a pumping station composed of electricity-free parts, and more
precisely: a diesel engine with manual start, that drives directly a pump,
with no need of electric motor in the pump (since it is driven directly by the
engine through a system of belts and pulleys) nor of electric start in the
diesel engine itself (which is indeed started manually with a handle keyed on
the crankshaft). Readers who have experience in humanitarian water supply
interventions in rural areas of the world will recognise in this
‘electricless’ station the arrangement with a Listeroid diesel engine and a
monopump. We provide more information about such equipment in these pages:
LINK engine and LINK pump.

	the ‘electric’ arrangement, where we may use electric power.

IMPORTANT: this a work in progress so the sections below are now kept as stubs for future implementation.

Electric Station

Check problem

TODO

Design problem

We examine the case of a feeder. The feeder entails an interesting problem
of economics.

Will it be preferable to adopt small bore feeders (and therefore limit the
cost of pipes) and consequently have a high hydraulic energy to overcome
(and therefore install more expensive pumps) or adopt the opposite solution
(larger pipes and smaller pumps)?

Electricless Station

Check problem

TODO

Design problem

TODO

Algorithms

Gravity

As seen in Gravity, the network of pipes is
shaped as a tree. Ruralwater models the network of pipes as a directed
acyclic graph (i.e.: a tree) whose nodes are the pathways.

here is a pdf file pdf

Check problem

The hydraulic check problem algorithm is the following:

	create the hydraulic energy equations of the law of Bernoulli,
where the known data are: the friction per unit water flow,
the elevation at the spring and at all the reservoirs.

	create the water flow continuity equations for each pathway that has children.

	the unknowns are: the water flow in each pathway

	create the symbolic equations of the law of Bernoulli

	create the symbolic equations of the law conservation of water flow

	consider the equations above as a system of equations and solve it.

	once the system of equation is solved, consider the water flow obtained in each pathway and calculate the hydraulic energy along each pathway.

	detect if at any point in any of the pathways, the resulting water pressure (hydraulic energy minus elevation) exceeds the pressure limit for the pipe used in that position.

Design problem

The overbanking energy, an introductory concept, is now introduced.

Overbanking energy

Water flows from higher to lower hydraulic energy… 💪 Therefore we set recursively the minimum hydraulic energy at a pathway’s tail end to be the energy at the head end plus “some energy” to allow a difference of hydraulic energy along the pathway and therefore the water flow.
Typically the overbanking energy is the elevation plus “some energy”, but in the case that the pathway climbs a hill then the overbanking energy is the highest elevation point downstream plus “some energy”.

Steps of the algorithm

The idea is then to perform a “search” by inspecting all possible combinations of hydraulic energy the pathways. This is therefore a permutation. For the allowed value of energy, the root pathway has a tail end energy fixed (it is the elevation), each of the leaves have a head end fixed energy (their elevations). The permutations regard therefore the head energy of the root pathway, the tail energy of the leaves pathways and both tail and head energy of each pathway that are neither root nor leaf. Also, the permutation must be limited to those combinations that allow an energy differential between tail and head end. The goal of the coroutine is exactly to ensure the above conditions. This is so because the coroutine is a generator that allow to loop and ensure the above conditions. Since this process must be valid for each possible topology of the branched network, then the coroutine is in charge of tackling this problem in a generic approach valid for each topology.

Image “5_pathways_overbank - only maxmin hydr energy” shows this idea.

	the “Tee Up” may have a max energy of X otherwise water could not flow from the spring

	the “Tee left” must

	the same logic applies to “Tee right”

	The pathways are nodes and some of them are leaves.

	the algorithm breaks down the tree of pathways into the pressure zones

	for each pressure zone it executes the steps below

	it sets the hydraulic energy at the tail end of the root node to be identical to the elevation at that end

	it sets the hydraulic energy at the head end of each leaf node to be identical to the elevation at that end

	it traverses the tree with a ‘depth-first search’ methodology

	while performing such depth-first search, it sets the ‘over-banking’ hydraulic energy to each node (apart from the leaves nodes) tail end. QUESTA FRASE IN MAIUSCOLO EST INCOMPLETA : THIS OVERBANKING ENERGY IS SET RECURSIVELY TO BE “A BIT” GREATER THAN THE OVERBANKING ENERGY AT THE LEAF NODES. COSA FAI AI NODI INTERNI? NON LO HA DETTO

	it permutes through all the combinations of over-banking energy at each non-leaf node. At this point each pathway has a value of tail end and head end hydraulic energy set.

	it evaluates the most economic pipes for those values of energy; this is the XXX algorithm and is still source of study. The evaluation of which are the most economic pipes cannot be solved by use of the simplex algorithm (as other softwares do) becasue we are dealing with hilly profiles (rural indeed) and therefore the pipe pressure classes must be taken in account and the problem to solve becomes non-convex. So, no simplex algorithm of use here…. 😞

	it sums the economic cost from each pathway

	it selects the solution which led to the lowest economic cost.

The image below gives an idea:

[image: _images/5_pathways_overbank.svg]

Electric Station

Check problem

TODO

Design problem

TODO

Electricless Station

Check problem

TODO

Design problem

TODO

business package

Provide the business logic for rural water supplies.

Solves the ‘hydraulic design problem’ and the ‘hydraulic check problem’
for two typologies of water supply, fit for the rural environment:
gravity and station.

Modules

The public API of ruralwater is composed of two modules:

	
	gravity:
	models the transport of water by gravity

	
	station:
	models the transport of water from a borehole to a reservoir

Subpackages

	business.commons package

	business.gravity package

	business.groundwater package

	business.helpers package

	business.interface package

	business.manufacturers package

	business.station package

	business.tests package

Submodules

business.loggers module

Module to handle logging of ruralwater.
To be moved into ‘microservices’ package.

Functions

	logger_factory
	factory of loggers for each module

	
business.loggers.logger_factory(module_name)

	
	Parameters

	module_name (string) – the name of the module which is requesting an instance of logger.

	Returns

	The logger object from the standard python library.

	Return type

	logger

business.commons package

	
business.commons.no_piped_segments = <business.commons.definitions.NoPipedSegments object>

	Prescribes the handle to the singleton of ‘spurious piped segment’ when the linear optimization algorithm fails to find a solution.

	
business.commons.simplex_failure_list = SimplexFailure

	Prescribes the handle to the singleton of ‘list of spurious piped segments’ when the linear optimization algorithm fails to find a solution. It may be due to either a numerical issue or to ‘flat’ or ‘steep’ profile. See SlopeOutsideFeasibleRange.

Subpackages

	business.commons.mixins package

Submodules

business.commons.TODO_settings module

business.commons.adapters module

Provide the adapters reading altimetric data from external files.

	
class business.commons.adapters.AltimeterFileAdapter(fullpath)

	Bases: object

Adapter from field surveys carried with ‘rope and barometric altimeter’

	
cleaned_data

	return the csv data, packed in ElevationProfilePoint namedtuples

	
property cleaned_data

	Return the elevation profile as a tuple of points.

Each point bears dimensional data.

	Returns

	the elevation profile, each point packed in a namedtuple.

	Return type

	Tuple[ElevationProfilePoint]

	
class business.commons.adapters.CacheCsvRows(*args, **kwargs)

	Bases: dict

A dictionary that caches the data returned by a csv reader.

Functionality: cache for csv reader, when data must be iterated over
multiple times.

The keys are the paths (strings) to the csv files.
When a key is missing, this dictionary reads and stores the csv file rows.
When a key is present, this dictionary returns the csv rows.

This class is used to read a csv file once and then to be able to iterate
over the rows multiple times without reading again the source file.
It is used when an adapter iterates multiple times over the rows, once for
data cleaning, then for adapting the data into a required format.

Important

It inherits from dict directly because we are changing functionality
that’s limited to a single method.

	
class business.commons.adapters.LevelrodFileAdapter(_fullpath: str)

	Bases: business.commons.loggers.InitLoggerMixin

Adapter from field surveys carried with the ‘level rod’.

Open, read and validate data from the file describing the field
readings taken from a level rod survey.

	Parameters

	fullpath (str) – the full path to the external source which contains the data.

	
class TurningPointReading(back_low: int, back_mid: int, back_high: int, fore_low: int, fore_mid: int, fore_high: int, remarks: any)

	Bases: business.commons.loggers.InitLoggerMixin

A dataclass record to represent one levelrod reading.

	
back_high: int

	

	
back_low: int

	

	
back_mid: int

	

	
fore_high: int

	

	
fore_low: int

	

	
fore_mid: int

	

	
remarks: any

	

	
property cleaned_data

	Return the elevation profile as a tuple of points.

Each point bears dimensional data.
The values of each point (downrange, elevation, pathlength) are
evaluated according to levelrod trigonometry. Refer to textbooks for
the theory.

	Returns

	the elevation profile, each point packed in a namedtuple.

	Return type

	Tuple[ElevationProfilePoint]

	
class business.commons.adapters.MapQuestApiAdapter(fullpath)

	Bases: business.commons.adapters.TrustedRawAltimetricFileAdapter

Adapter from MapQuest api service (https://www.mapquest.com/)

Important

There is no need to clean the data: they are provided by
an external service (MapQuest) and are therefore assumed to be correct.

	
class business.commons.adapters.TrustedRawAltimetricFileAdapter(fullpath)

	Bases: object

Adapter from a ‘trusted’ source: no data cleaning performed.

	
cleaned_data

	return the csv data, packed in ElevationProfilePoint namedtuples

	
property cleaned_data

	Return the elevation profile as a tuple of points.

Each point bears dimensional data.

	Returns

	the elevation profile, each point packed in a namedtuple.

	Return type

	Tuple[ElevationProfilePoint]

	
class business.commons.adapters.UntrustedRawAltimetricFileAdapter(fullpath)

	Bases: business.commons.adapters.TrustedRawAltimetricFileAdapter

Adapter from an ‘untrusted’ source: data cleaning is provided.

	
property cleaned_data

	Return the elevation profile as a tuple of points.
Each point bears dimensional data.

business.commons.constants module

Collection of constants used by gravity and pumpstation folders.

	
business.commons.constants.FLOW_EXPONENT = 2

	Prescribes the exponents used in the Darcy-Weisbach hydraulic friction formulae.

	
business.commons.constants.MIN_TO_MAX_WIGGLE_DEMAND_PERCENT = 0.6

	Prescribes a default ration between forecasted demand and a minimal acceptable demand.

business.commons.coroutines module

Avoid running useless heavy computations.

	
class business.commons.coroutines.CoroutineMinima(*args, **kwargs)

	Bases: collections.defaultdict, business.commons.loggers.InitLogger

Cache to store the best result so far in a systematic seach process.

Functionality: store the best result so far in a systematic search
optimization process.

When the coroutines perform a systematic search process aiming at
optimizing the design of a rural system, the penalty of each solution
may be compared with the ‘best minimum so far’ available from this class.
If the best minimum is exceeded, then the coroutine may skip calculations.
INGLESE, QUESTA E’ UNA FRASE CHE NON SO COME SCRIVERE.

	
store(root_slug, candidate_minimum)

	Set the value for a given key.

	Parameters

	
	root_slug (str) – the key where to set the value

	candidate_minimum (decimal.Decimal) – the value to be set.

business.commons.defaults module

Collection of default input values used by gravity and pumpstation folders.

	
business.commons.defaults.design_years = 20

	Prescribes the default number of years to evaluate the forecasted demand.

	
business.commons.defaults.population_growth_rate = 0.15

	Prescribes the default demographic growth to evaluate the forecasted demand.

business.commons.definitions module

Provide definitions used when solving the ‘hydraulic design problem’.

	
class business.commons.definitions.CheckCalculationsReport(check_is_completed: bool = None, check_solution: business.commons.definitions.CheckSolution = None, errors: dict = None)

	Bases: object

	
check_is_completed: bool = None

	

	
check_solution: business.commons.definitions.CheckSolution = None

	

	
errors: dict = None

	

	
class business.commons.definitions.CheckSolution(status: Any = None)

	Bases: tuple

Store the report from the hydraulic check problem calculations..

	
property status

	Alias for field number 0

	
class business.commons.definitions.DesignCalculationsReport(design_is_successful: bool = None, optimized_solution: Set[business.commons.definitions.TraversalSolution] = None, errors: dict = None)

	Bases: object

	
design_is_successful: bool = None

	

	
errors: dict = None

	

	
optimized_solution: Set[business.commons.definitions.TraversalSolution] = None

	

	
class business.commons.definitions.DesignSolution(cost_per_beneficiary: decimal.Decimal = Decimal('0'), cost_per_liter: decimal.Decimal = Decimal('0'), design_details: Any = None, errors: Any = None, investment_cost: decimal.Decimal = Decimal('0'), running_cost: decimal.Decimal = Decimal('0'), water_flow: pint.quantity.build_quantity_class.<locals>.Quantity = None)

	Bases: tuple

Store the report from the ‘hydraulic design problem’ calculations..

	
property cost_per_beneficiary

	Alias for field number 0

	
property cost_per_liter

	Alias for field number 1

	
property design_details

	Alias for field number 2

	
property errors

	Alias for field number 3

	
property investment_cost

	Alias for field number 4

	
property running_cost

	Alias for field number 5

	
property water_flow

	Alias for field number 6

	
class business.commons.definitions.NoPipedSegments(*args, **kwargs)

	Bases: object

An empty iterable.

Functionality: interpreted by calling code as ‘no solution found by
the simplex algorithm’

Notes

Implements an Iterable because the simplex solution is iterable.

	
class business.commons.definitions.SimplexFailureList(*args, **kwargs)

	Bases: object

A spurious sequence of PipedSegments.

Functionaity: it means that the simplex design algorithm could not
find a solution.

Notes

Returned by returned by SingleLinprogStretchMixin.
SingleLinprogStretchMixin is in charge of solving a linear problem.
However, if a solution cannot be found, it returns this class so to comply
with the interface returned when a solution is found.
INGLESE DA MIGLIORARE

	
piped_segment = <business.commons.definitions.NoPipedSegments object>

	

	
class business.commons.definitions.TraversalSolution(energy_at_tail_point: pint.quantity.build_quantity_class.<locals>.Quantity = None, energy_at_head_point: pint.quantity.build_quantity_class.<locals>.Quantity = None, is_failed: bool = None, penalty: decimal.Decimal = Decimal('0'), piped_segments: Tuple[business.helpers.definitions.PipedSegment] = (), trunk: Any = None, water_flow: pint.quantity.build_quantity_class.<locals>.Quantity = None)

	Bases: tuple

Store the result of CoroutineMixin.solve_traversal.

	
property energy_at_head_point

	Alias for field number 1

	
property energy_at_tail_point

	Alias for field number 0

	
property is_failed

	Alias for field number 2

	
property penalty

	Alias for field number 3

	
property piped_segments

	Alias for field number 4

	
property trunk

	Alias for field number 5

	
property water_flow

	Alias for field number 6

business.commons.energy module

Collection of classes used to represent the ‘hydraulic grade line’.

	classes
	
	EnergyProfilePoint
	A point belonging to the water energy line along a pipe trench.

	ElevationProfilePoint
	A point belonging to altimetric elevation profile along a pipe trench.

	BaseEnergyProfileMixin
	A base class for other classes which bear the name ‘profile’.

	ElevationProfile
	The altimetric elevation profile along a pipe trench.

	EnergyProfile
	The profile of the hydraulic energy line along a pipe trench.

	
class business.commons.energy.BaseEnergyProfileMixin

	Bases: business.commons.energy.PlotBaseEnergyProfileMixin

A mixin class gathering methods used to do geometric calculations.

	
downrange()

	Return the horizontal span of the hydraulic energy line.

	
pathlength()

	Return the linear length of the hydraulic energy line.

	
translate_vertically(vertical_shift=Quantity('length'))

	Shift vertically the energy line by vertical_shift

	
get_unique_intersection_with(other: BaseEnergyProfileMixin)

	Return the unique intersection point with another energy line

	
get_tailmost_intersection_with(other: BaseEnergyProfileMixin)

	Return the first intersection point with another energy line

	
get_headmost_intersection_with(other: BaseEnergyProfileMixin)

	Return the last intersection point with another energy line

	
as_linestring()

	Return the energy line represented as a Shapely LineString object

	
intersects_with()

	Boolean test checking if two energy lines do intersect or not

	
get_section_inbetween_downranges(from_downrange, until_downrange: Quantity(‘length’))

	Create a new energy line by slicing the current one among given ends

	
property as_linestring

	Return this instance as a shapely linestring object.

The Shapely LineString instance generated will have the same coordinates
as those of ElevationProfilePoint’s which constitute this energy line.

The linestring is a collection of adimensional 2-tuples.
You may feed matplotlib ‘plot’ method with linestring.xy method.

>>> elevation_profile.as_linestring
[(20, 35), (22, 36), (23, 37), ..., (800, 145)]

	
property downrange

	Return the horizontal span of the BaseProfile.

	Returns

	a dimensional value

	Return type

	Quantity(“length”)

	
get_headmost_intersection_with(other: business.commons.energy.EnergyProfile) → business.commons.energy.ElevationProfilePoint

	Return the last (rightmost) intersection between two energy lines.

If there is more than one intersection point, this method will return
the one nearest to the head end of the energy line.

	Parameters

	other (EnergyProfile) – the energy line that might intersect this energy line

	Raises

	NonExistentIntersection – If no intersection point was found.
 This exception is raised from method _get_intersections_with

	
get_section_inbetween_downranges(from_downrange: pint.quantity.build_quantity_class.<locals>.Quantity, until_downrange: pint.quantity.build_quantity_class.<locals>.Quantity) → business.commons.energy.EnergyProfile

	Create a new energy line by slicing the current one among given ends.

If the ends provided (see parameters) exceed the horizontal span
of the current energy line, then no exception is raised and the slicing
will include the beginning (or the end) of this energy line.
This is the same behaviour as python’s list slicing.

	Parameters

	
	from_downrange (Quantity("length")) – the downrange the new energy line starts from

	until_downrange (Quantity("length")) – the downrange the new energy line ends to

	Returns

	a new profile whose first and last point are evaluated by
interpolating on the pathlengths of this energy line, while all
inner points are the copied from this energy line.

	Return type

	EnergyProfile

	
get_tailmost_intersection_with(other: business.commons.energy.EnergyProfile) → business.commons.energy.ElevationProfilePoint

	Return the first (leftmost) intersection between two energy lines.

If there is more than one intersection point, this method will return
the one nearest to the tail end of the energy line.

	Parameters

	other (EnergyProfile) – the energy line that might intersect this energy line

	Raises

	NonExistentIntersection – If no intersection point was found.
 This exception is raised from method _get_intersections_with

	Returns

	whose downrange, elevation fields store the (dimensionalized)
geometrical intersection point between ‘self’ profile and
other profile.

	Return type

	ElevationProfilePoint

	
get_unique_intersection_with(other: business.commons.energy.EnergyProfile) → business.commons.energy.ElevationProfilePoint

	Return the unique intersection between two energy lines.

It is responsibility of the caller to ensure that the two energy
lines may intersect at most once.
A typical use case is when the hydraulic design algorithms
attempt to find the swivel point from the simplex solution.

	Parameters

	other (EnergyProfile) – the energy line that might intersect this energy line

	Raises

	UnforeseenMultipleIntersection – If more than one intersection point was found or no intersections
 were found.

	Returns

	whose downrange, elevation fields store the values (dimensionalized)
from .x and .y coordinated of the intersection point

	Return type

	ElevationProfilePoint

	
intersects_with(other: business.commons.energy.EnergyProfile) → bool

	Return boolean test if this energy line intersects with another.

	Parameters

	other (EnergyProfile) – the energy line that might intersect this one

	
property pathlength

	Return the linear length of the hydraulic energy line.

	Returns

	a dimensional value

	Return type

	Quantity(“length”)

	
translate_vertically(vertical_shift: pint.quantity.build_quantity_class.<locals>.Quantity) → None

	Shift the current instance vertically by vertical_shift.

The shift is done ‘in-place’, no new instance of EnergyProfile
is created.

	
property x_axis_coordinates_array

	Return the sequence of x coordinates of the energy line.

The data are formatted to match matplotlib library interface.

	
property y_axis_coordinates_array

	Return the sequence of y coordinates of the energy line.

The data are formatted to match matplotlib library interface.

	
class business.commons.energy.ElevationProfile(iterable: Iterable = [])

	Bases: business.commons.mixins.interpolation.PointFactoryMixin, business.commons.mixins.interpolation.ProfileInterpolationMixin, business.commons.energy.BaseEnergyProfileMixin, business.helpers.utils.TypedList

A class to represent the altimetric elevation profile along a pipe trench.

	
get_pressure_limit_profile(pressure_limit=Quantity[pressure])

	return the elevation profile shifted vertically by the pressure limit

	
property elevation_at_tail_end

	Return the elevation measured at the first point of this profile.

	
get_pressure_limit_profile(pressure_limit: pint.quantity.build_quantity_class.<locals>.Quantity) → business.commons.energy.EnergyProfile

	Return an EnergyProfile raised from this altrimetric profile by pressure_limit.

It is used to check geometrically if an energy line, once calculated,
will lie between the elevation profile and the pressure limit profile.

	Parameters

	pressure_limit (Quantity("length")) – a value of pressure expressed, as per hydarulic engineering, HAESTADT
expressed in units of length (usually ‘meters of water’).
The value of pressure_limit passed to this function is usually
taken from one of the rated working pressures available from the
catalog of pipes: manufacturers.catalogs.pipes

	Returns

	the energy profile fit for pressure_limit rating.

	Return type

	EnergyProfile

	
class business.commons.energy.ElevationProfilePoint(downrange: float, elevation: float, remarks: Optional[Dict] = None, pathlength: Optional[float] = None)

	Bases: business.commons.energy.EnergyProfilePoint

Represent point belonging to altimetric elevation profile.

	
pathlength

	the pathlength measured along the pipe trench.

	Type

	Quantity(“length”)

	
pathlength: float = None

	

	
class business.commons.energy.EnergyProfile(iterable: Iterable = [])

	Bases: business.commons.energy.BaseEnergyProfileMixin, business.helpers.utils.TypedList

A class to represent the hydraulic grade line HAESTADT.

	
property as_serializable

	

	
class business.commons.energy.EnergyProfilePoint(downrange: float, elevation: float, remarks: Optional[Dict] = None)

	Bases: object

Represent a point along the water energy line.

The water energy line is defined piecewise as a collection of instances
belonging to this class.

	
downrange

	the x coordinate of the point in a 2-d plan

	Type

	Quantity(“length”)

	
elevation

	the y coordinate of the point in a 2-d plan

	Type

	Quantity(“length”)

	
remarks

	any information added to the point, typically from field notes.
Example: “soil is hard to dig starting from this point”

	Type

	dict

	
property as_geometry

	Return a Shapely object from the current instance.

	Returns

	
	A new *shapely.geometry.Point instance whose coordinates are given*

	by the magnitude of the *ElevationProfilePoint coordinates.*

	
property as_humanised

	Return a string having field values truncated to few decimals.

It is used for improved readability.

	
downrange: float

	

	
elevation: float

	

	
remarks: Dict = None

	

	
class business.commons.energy.PlotBaseEnergyProfileMixin

	Bases: object

A mixin class gathering methods used to do geometric calculations.

	
x_axis_coordinates_array

	Return the sequence of x coordinates of the energy line

	
y_axis_coordinates_array

	Return the sequence of y coordinates of the energy line

	
property as_matplotlib_curve

	Return this instance as a Matplotlib curve, ready to be plotted.

business.commons.exceptions module

Collection of exceptions raised by ‘gravity’ and ‘pumpstation’ folders.

	
exception business.commons.exceptions.CorruptedLandElevationFile

	Bases: business.commons.exceptions.ImproperlyConfiguredTrunk

The trunk topographic survey file contains nonsensical data.

	
exception business.commons.exceptions.ImproperlyConfiguredTrunk

	Bases: business.commons.exceptions.ImproperlyConfiguredWaterSystem

Exception class to indicate errors during Trunk initialization.

Some data needed to describe a Trunk were not provided by the user.
It may be raised by any class that extends Watermain

	
exception business.commons.exceptions.ImproperlyConfiguredWaterSystem

	Bases: business.commons.exceptions.RuralwaterException

Exception class to indicate errors during water supply initialization.

Some data needed to solve the hydraulic design/check problem
were not provided by the user.

It may be raised by any class that extends Station
or BaseGravity

	
exception business.commons.exceptions.NonExistentIntersection

	Bases: business.commons.exceptions.RuralwaterException

The HGL tract and the PN-_elevation_profile do not intersect.

Raised by the algorithms that seach for optimization of the
hydraulic grade line:
* commons.energy
* gravity.mixins.trimming
* gravity.stretches
* gravity.stretching.pressure
* pumpstation.climb

	
exception business.commons.exceptions.NonsensicalLandElevationData

	Bases: business.commons.exceptions.ImproperlyConfiguredTrunk

A file can be read but the data make no logical sense.

	
exception business.commons.exceptions.NotImplementedInRuralwater

	Bases: business.commons.exceptions.RuralwaterException

Invoked method is not implemented in this version of ruralwater.

	
exception business.commons.exceptions.RuralwaterException

	Bases: Exception

Basic exception for all errors raised by ruralwater.

Base exception class for all exceptions raised in ruralwater/webapp/business.
No code in the business logic will raise this exception directly;
it serves solely to provide a distinguishing parent class for other errors.

	
exception business.commons.exceptions.UnadvisableDuty

	Bases: business.commons.exceptions.RuralwaterException

The working conditions exceed the limits imposed by hydraulic hardware
or by available water sources.

Exceptions that ovveride this one are found in the pumpstation and
groundwater modules.

The message attached to the Exception, carries the information about the
exact nature of the engineering problem identified.

	Examples:
	
	“water hammer exceeds pipes pressure ratings”:
	raised by australia.system when tripping the “monopump” results
in water hammer transient above the feeder pipes classes.

	“diesel engine carbonation”
	raised by australia.system when the continuous working conditions
impose a load on DieselEngine below 50%.

	
exception business.commons.exceptions.UnforeseenMultipleIntersection

	Bases: business.commons.exceptions.RuralwaterException

The HGL tract and the PN-_elevation_profile intersect (unexpectedly)
more than once.

This exceptions should never be raised. If it will occour it is likely
that it will have been caused by a bug not yet detected or fixed.

business.commons.loggers module

	
class business.commons.loggers.InitLogger

	Bases: business.commons.loggers.LoggerMixin

Allow the class instances to use python logging mechanism.

	
class business.commons.loggers.InitLoggerMixin

	Bases: business.commons.loggers.LoggerMixin

Allow hooking into __post_init__ to use python logging mechanism.

	
class business.commons.loggers.LoggerMixin

	Bases: object

Algorithms to use python logging mechanism.

business.commons.traversals module

Provide common methods aspects of a ‘subnode’ and a ‘soil stretch’.

	
class business.commons.traversals.PipeDesignPoolMixin

	Bases: object

Mixin to get a handle to the catalog of commercial pipes.

Functionality: accessor to the catalog of pipes for the trunk.

	
commercial_pipes

	return a handle to the catalog of commercial pipes available to run
the hydraulic calculations.

	
property commercial_pipes

	Return a handle to the catalog of commercial pipes.

Pipes may be either plastic or metallic.
Further typologies of pipes might be added in the future.

	
class business.commons.traversals.TraversalsTrunkOrStretchMixin

	Bases: object

Algorithms common to Trunk and Subtrunk.

Functionality: algorithms dealing with the rated working pressure.

Notes

Algorithms fired by __init__ of ‘subnode’ and ‘soil stretch’.

	
_tail_point_pressure

	return the hydraulic pressure felt at the tail point of the ‘subnode’ or ‘soil stretch’.

	
_head_point_pressure

	return the hydraulic pressure felt at the head point of the ‘subnode’ or ‘soil stretch’.

business.commons.watermains module

Provide commons elements of DendridicTrunks and Feeders.

Functionality: ‘gravity’ has a tree of pathways, while ‘station’ has a single
feeder. Since the single feeder is a ‘spurious’ tree, we can say that
‘gravity’ and ‘station’ share common elements of directed acyclic graph.
This module provides the common functionalities of a tree (the gravity’s
pathway topology) and of a ‘single node’ (the station’s pathways topology).

	
class business.commons.watermains.Watermain(**kwargs)

	Bases: business.commons.watermains.WatermainMixin, business.commons.mixins.cost.PipesCostMixin, business.commons.loggers.InitLogger

Represent a pathway with or without the pipes defined.

Common to trunks and feeders, both in design and check calculations.

Notes

Along the watermain the flow of water is the same.
The Watermain is composed of a sequence of different diameters,
pipe materials and pipe pressure specifications.
Along the pipeline the flow of water is constant, i.e.: there are no
water flow abstractions from the ‘tail end’ to the ‘head end’.

	
pathlength

	the linear distance of a man walking along the pipeline.

	Type

	Quantity(“length”)

	
profile_elevation_at_head_end

	the altimetric elevation at the ‘beginning’, i.e.: where the water flows from.

	Type

	Quantity(“length”)

	
profile_elevation_at_tail_end

	the altimetric elevation at the ‘end’, i.e.: where the water flows to.

	Type

	Quantity(“length”)

	
get_hydraulic_friction

	the energy burned off in the pipeline by the water flowing inside it.

	Type

	Quantity(“length”)

	
class business.commons.watermains.WatermainCheck(**kwargs)

	Bases: business.commons.watermains.Watermain

Represent a pathway with the pipes defined

Functionality: common to trunks and feeders, specific for
hydraulic check calculations.

Overrides Watermain and sets the catalog of pipes available to
run the hydraulic check calculations.
The catalog of pipes corresponds to “ALL_PIPE_MATERIALS_ALLOWED”
since check calculations must access data from any possible typology of pipe.

	
property get_hgl_profile

	evaluate the hydraulic energy profile arising from
the piped segments set in the __init__ of the TrunkCheck and with:
* the hydraulic energy at head and tail points and…
* …the water flow…
…following to the solution of the ‘hydraulic check problem’.

See also

	_interpret_sympy_result()
	which sets the water flows and

the, when

Notes

The solution of the ‘hydraulic check problem’makes use of the
hydraulic friction coefficients 2 and 5 (instead of 1.8 and 4.8
as in the theory); see _darcy_weisbach().
This change of coefficient is imposed by the requirements of the
sympy package, which could not otherwise solve a system of algebraic
equations with fractional powers.
As a consequence if you run a ‘hydraulic design problem’ followed by
an ‘hydraulic check problem’, the water flows obtained from the
chekc problem will not be identical (albeit similar) to those
inputted in the design problem.
For the same reason, the shape of the hydraulic energy along each
pathway, returned by the plots of the resuts, will slightly differ
between the design and the check problem.

	Type

	Functionality

	
property piped_segments

	Return the sequence of commercial pipes and lengths for this trunk.

The setter converts the json data received into the proper
PipedSegment instances, by retrieving the commercial pipe for
each piped segment.

	Parameters

	TODO –

	
class business.commons.watermains.WatermainDesign(**kwargs)

	Bases: business.commons.watermains.Watermain

Represent a pathway without the pipes defined.

Functionality: common to trunks and feeders, specific for
hydraulic design calculations.

Overrides Watermain and sets the catalog of pipes available to
run the hydraulic design calculations.
The catalog of pipes may be restrictive, in the sense that some pipelines only allow for metallic pipes (for example: where a trench cannot be dug due to the hard soil conditions).

just for testing sphinx: here I have a link to Watermain and ciao

just for testing sphinx: here I have a link to business.gravity.arrangements.design.GravityDesign and ciao

just for testing sphinx: here I have a tilde link to GravityDesign and ciao

	
piped_segments

	the sequence of commercial pipes (and their length) along the pipeline.

	Type

	List[PipedSegment]

	
property piped_segments

	Return the sequence of commercial pipes and lengths for this trunk.

The setter sets the state of each commercial pipe belonging to
piped_segments to carry the water flow of the trunk.

	Parameters

	TODO –

	
class business.commons.watermains.WatermainMixin

	Bases: object

Algorithms common to all trunks.

	
get_ratings_to_plot()

	return the pressure ratings of the pipes used in this trunk instance.

	
property get_ratings_to_plot

	Return the pressure ratings of the piped segments of the Trunk.

Each commercial pipe has an associated pressure rating.
When the Trunk has _piped_segments set, this methods returns
these ratings, so to allow the caller to draw the pressure limit
profile for each commercial pipe used in _piped_segments.

Example

If, for example, we used a 2” HDPE PN6 pipe, then it will be
interesting to draw the PN6 pressure limit to check visually how much
the energy line lies below such limit.

	Returns

	the list of pressure ratings, sorted from the smallest.

	Return type

	List(Quantity(“length”))

	
property name

	

	
property pathlength

	Return the linear distance of a man walking along the pipeline.

	
property plot_as_svg

	

	
property profile_elevation_at_head_end

	Return the altimetric elevation at the ‘beginning’,
i.e.: where the water flows from.

	
property profile_elevation_at_tail_end

	Return the altimetric elevation at the ‘end’,
i.e.: where the water flows to.

	
property water_flow

	

business.commons.mixins package

Submodules

business.commons.mixins.cost module

	
class business.commons.mixins.cost.PipesCostMixin

	Bases: object

Functionalities to evaluate the cost of _piped_segments.

	
property get_cost

	Return cost estimates for a Trunk*or a *SoilStretch

Note

Precondition: piping_list is set.

	Returns

	The cost of the sequence of PipingList instances associated
with the Trunk*or or with the *SoilStretch.

	Return type

	decimal.Decimal

business.commons.mixins.interpolation module

	
class business.commons.mixins.interpolation.PointFactoryMixin

	Bases: object

Mixin holding functionalities to crete points of the elevation profile.

	
create_point_at_given_downrange(downrange)

	Create and return a new ElevationProfile point.

The point is created through interpolation of elevation and pathlength
along the sequence of downranges of the ElevationProfile.
The caller will be in charge of inserting the ElevationProfilePoint
here returned into the ElevationProfile.

	Parameters

	downrange (Quantity("length", float)) – the downrange at which interpolation is evaluated

	Returns

	the newly created point.

	Return type

	commons.ElevationProfilePoint

	
class business.commons.mixins.interpolation.ProfileInterpolationMixin

	Bases: object

Mixin holding functionalities to interpolate a point of an ElevationProfile.

	
get_elevation_at_given_downrange(downrange)

	Return the interpolated elevation at a given downrange.

	Parameters

	downrange (Quantity("length", float)) – the downrange at which the elevation must be evaluated

	Returns

	the interpolated elevation

	Return type

	Quantity(“length”, float)

	
get_interpolated_downrange_at_pathlength(pathlength)

	Return the interpolated downrange at a given pathlength.

	Parameters

	pathlength (Quantity("length", float)) – the pathlength at which the downrange must be evaluated

	Returns

	the interpolated downrange

	Return type

	Quantity(“length”, float)

	
get_interpolated_elevation_at_pathlength(pathlength)

	Return the interpolated elevation at a given pathlength.

	Parameters

	pathlength (Quantity("length", float)) – the pathlength at which the elevation must be evaluated

	Returns

	the interpolated elevation

	Return type

	Quantity(“length”, float)

	
get_interpolated_pathlength_at_downrange(downrange)

	Return the interpolated pathlength at a given downrange.

	Parameters

	downrange (Quantity("length", float)) – the downrange at which the elevation must be evaluated

	Returns

	the interpolated pathlength

	Return type

	Quantity(“length”, float)

business.commons.mixins.linear module

Provide algorithms performing linear programming optimization.

	
class business.commons.mixins.linear.SingleLinprogStretchMixin

	Bases: object

Algorithms for linear programming algorithms in use by BaseStretch.

	
linear_solver()

	return the piped segments resulting from linear programming optimization

	
get_open_flow_pipe_segments()

	return the single piped segment when ‘open flow’ conditions occour

	
property get_open_flow_pipe_segments

	Return the single piped segment when ‘open flow’ conditions occour

This method is called when, in a **, the elevation prfile is so steep
that the required water flow is carried ‘as in a canal’.
Any commercial pipe from the catalog is fit and hence it must be chosen
the one which costs less.

	Returns

	a one-element list; the element is a piped segment which extends
for the whole length of the trunk, and whose pipe is the most
economical picked from the catalog of available pipes.

	Return type

	List[PipedSegmentDesign]

	
property linear_solver

	Return the piped segments resulting from linear programming optimization.

Functionality: Returns the sequence of piped segments which leads
to the ‘least cost’ at the given _water_flow and at the given
hydraulic energy at tail and head ends.

If linear programming detects that there is no solution, then an
exception is raised and will be handled by the caller of this method.

	Returns

	list(helpers.definitions.PipedSegmentDesign): the list of piped
segments resulting from successful implementation of the
‘simplex’ methodology (Dantzig theorem).

	Return type

	List[PipedSegmentDesign]

business.gravity package

Design and check projects of water supplies fed by gravity.

Classes

	
	GravityCheck:
	models the ‘hydraulic check problem’ for a ‘gravity’ water supply.

	
	GravityDesign:
	models the ‘hydraulic design problem’ for a ‘gravity’ water supply.

Subpackages

	business.gravity.arrangements package

	business.gravity.mixins package

	business.gravity.solvers package

	business.gravity.stretching package

	business.gravity.trunking package

	business.gravity.views package

Submodules

business.gravity.constants module

Collection of constants used by the gravity foldes.

	
business.gravity.constants.RANDOM_SEARCH_RANGE_PAD = <Quantity(25, 'meter')>

	Prescribes the minimal hydraulic energy to be burned along a Trunk during gravity tree random search. This value magnitude is expected to be an integer.

business.gravity.coroutines module

Find an optimal solution to the ‘hydraulic design problem’.

Functionality: Perform the systematic search of the optimal values of
hydarulic energy at all junctions internal to a rpessure zone.

	
class business.gravity.coroutines.AccumulatorDuringRange

	Bases: business.helpers.utils.TypedSet

Collection of solutions of the ‘hydraulic design problem’ within the subtree.

Functionality: accumulate the feasible solutions (while the
‘systmatic search’ algorithm runs) of the ‘hydraulic design problem’
so to allow, once the systematic search algorith ends, to collect the
one with the least economic cost.

Notes

Extends a strongly typed set.

	
property best_during_range

	

	
class business.gravity.coroutines.CoroutineLeaf(trunk: business.gravity.trunks.TrunkDesign, name: str, down_elev: int)

	Bases: business.gravity.coroutines.CoroutineMixin

Represent a root where the coroutine process ends
(and starts sending data back towards the root)

There is one instance for each TrunkDesign whose ‘head’ end
is atmospheric.

	
merger()

	Return the optimal solution for this trunk

	
down_elev: int

	

	
merger() → business.gravity.coroutines.CurrentSimplexesList

	Advance the coroutine pipeline and return the optimal solution
at the current energy constraints.

	Yields

	CurrentSimplexesList – the result from linear optimization of the trunk

	
name: str

	

	
send(arg)

	

	
trunk: business.gravity.trunks.TrunkDesign

	

	
class business.gravity.coroutines.CoroutineMixin

	Bases: business.commons.loggers.InitLoggerMixin

Algorithms common to CoroutineRoot, CoroutineNode and CoroutineLeaf.

	
class business.gravity.coroutines.CoroutineNode(trunk: business.gravity.trunks.TrunkDesign, name: str, down_flight: int, adj_list: Any)

	Bases: business.gravity.coroutines.CoroutineMixin

Represent a pathway where the coroutine process is executed.

There is one instance for each TrunkDesign which is ‘internal’ of
a PressureZone.
More specifically: neither the trunk ‘tail’ nor the ‘head’ are atmospheric.

	
merger()

	Return the optimal solution for this trunk and its children

	
adj_list: Any

	

	
down_flight: int

	

	
merger() → business.gravity.coroutines.CurrentSimplexesList

	Advance the coroutine pipeline and return the optimal solution
at the current energy constraints.

	Yields

	CurrentSimplexesList – the best result from linear optimization of the trunk and all
of its children trunks belonging to the pressure zone.

	
name: str

	

	
send(arg)

	

	
trunk: business.gravity.trunks.TrunkDesign

	

	
class business.gravity.coroutines.CoroutineRoot(trunk: business.gravity.trunks.TrunkDesign, name: str, up_elev: int, down_flight: int, adj_list: Any)

	Bases: business.gravity.coroutines.CoroutineMixin

Represent a root where the coroutine process starts from.

There is one instance for each TrunkDesign which is a root of a
PressureZone.

	
merger()

	Return the optimal solution for the pressure zone

	
adj_list: Any

	

	
down_flight: int

	

	
merger() → business.gravity.coroutines.CurrentSimplexesList

	Return the optimal solution.

	Returns

	the list of namedtuples that describe the optimal solution
for each trunk in the entire pressure zone

	Return type

	CurrentSimplexesList

	
name: str

	

	
trunk: business.gravity.trunks.TrunkDesign

	

	
up_elev: int

	

	
class business.gravity.coroutines.CurrentSimplexesList(iterable: List = [])

	Bases: business.helpers.utils.TypedList

Accumulator

	
property get_my_cost

	

	
property is_failed

	

business.gravity.exceptions module

Collection of exceptions raised by ‘gravity’ folder.

	
exception business.gravity.exceptions.AllCommercialPipesAreUnsuitableForSimplex(message, desired_flow, required_rating)

	Bases: business.manufacturers.exceptions.pipes.AllCommercialPipesAreUnsuitableSpeedwise, business.gravity.exceptions.OpenEndsTrunkEdgeCase, business.gravity.exceptions.BaseLinprogFailure

No pipe is suitable to carry the desired _water_flow within the advisable
_water_flow speed limits.

Raised by BasePipePool.

	
exception business.gravity.exceptions.BaseLinprogFailure

	Bases: business.commons.exceptions.RuralwaterException

Base exception class when the linear optimization algorithm fails.

Applies to:
* Subtrunk
* SoilStretch

Occours in situations where there is:
(1) flat slope
(2) steep slope
(3) floating point arithmetic problems (raise from inside the
scipy.optimize.linprog library)

Raised if both method=”simplex” and method=”interior-point”
fail to find the minimum of the objective function.
See “notes” section from page:
https://docs.scipy.org/doc/scipy/reference/optimize.linprog-interior-point.html

	
exception business.gravity.exceptions.FailedSubtreeDesign

	Bases: business.commons.exceptions.RuralwaterException

The ‘hydraulic design problem’ of a pressure zone could not be solved.

Raised, for example, by *business.gravity.coroutines.CoroutineRoot
when no solution could be found by the coroutine algorithm.

	
exception business.gravity.exceptions.FlatSlope(message, subnode_headloss_slope, min_pipe_headloss)

	Bases: business.gravity.exceptions.SlopeOutsideFeasibleRange

The trunk energy is too little.

Even the largest commercial pipe burns more than the hydraulic energy,
at the current water flow.

	
exception business.gravity.exceptions.LeafNodeDemandDataMissing(message, leaf_missing_demand_data)

	Bases: business.commons.exceptions.RuralwaterException

The demand data at some leaf node is missing.

A trunk may have no demand data and just carry water to its children.
However, if a trunk is a ‘leaf’ (i.e.: it discarges in a reservoir
at the end of the dendridi network) then it must have a demand.
Otherwise, is no reason why the Trunk should exists.

Raised when the TrunkDesign._water_flow value is zero after TrunkDesign.set_flow.

	
exception business.gravity.exceptions.LinprogNumericalIssue

	Bases: business.gravity.exceptions.BaseLinprogFailure

Package scipy.optimize.linprog failed performing the linear optimization.

	
exception business.gravity.exceptions.OpenChannelFlow(message, piped_segments)

	Bases: business.commons.exceptions.RuralwaterException

A TrunkDesign shows MOTO A CANALETTA.

	
exception business.gravity.exceptions.OpenEndsTrunkEdgeCase

	Bases: business.commons.exceptions.RuralwaterException

Base class for the exceptions raised by an atmospheric node.

Raised when the HGL gradient is too flat / too steep with resepct to
the range of HGL gradients returned by the available pipes.
Also, raised when the *MOTO A CANALETTA* occours.

	
exception business.gravity.exceptions.PressureLimitsExceeded(message, piped_segments)

	Bases: business.gravity.exceptions.BaseLinprogFailure

Pipes result in exceeding pressure limits.

Raised for example when the solution of linear programming (simplex)
results in pressure exceeding the pipes’ max allowed pressure.

	
exception business.gravity.exceptions.SlopeOutsideFeasibleRange

	Bases: business.gravity.exceptions.BaseLinprogFailure

The constraints of the optimization problem are too stringent.

Raised when the hydraulic energy to be burned off is too high/too low
for any of the commercial pipes available from the catalog of hydraulic
hardware.

	
exception business.gravity.exceptions.SteepSlope(message, subnode_headloss_slope, candidate_pipes_headlosses, open_flow_pipe_segments)

	Bases: business.gravity.exceptions.SlopeOutsideFeasibleRange

The trunk energy is too little.

Even the smallest commercial pipe burns less than the hydraulic energy,
at the current water flow.

If raised by an AtmosphericTrunkDesign, it entails that the
trunk shows ‘open channel flow’.

	
exception business.gravity.exceptions.WaterSystemIsNotATree

	Bases: business.commons.exceptions.RuralwaterException

The topology of the water supply system is not a tree.

business.gravity.stretches module

Define the concept of ‘splitting’ a Subtrunk into sections.

	
class business.gravity.stretches.AtmosphericSubtrunk(_energy_at_tail_point: float, _energy_at_head_point: float, _elevation_profile: business.commons.energy.ElevationProfile, _pressure_limit: pint.quantity.build_quantity_class.<locals>.Quantity, _water_flow: pint.quantity.build_quantity_class.<locals>.Quantity, _pathlength_starts_at: pint.quantity.build_quantity_class.<locals>.Quantity, _requires_metallic_pipes: bool, _trunk_name: str = 'Trunk default name')

	Bases: business.gravity.stretches.Subtrunk

A stretch of a Trunk whose ends are both at atmospheric pressure.

	
property hgl_lies_above_elevation_profile

	Overrides parent’s method.

Important

This is an atmospheric TrunkDesign, therefore there are at least
two intersections, found at the first and the last point of the _profile.
More than two intersection points require the HGL to cross the
terrain inside the pathlength. Therefore the HGL intersects
the elevation profile.

	
class business.gravity.stretches.SubstretchMixin

	Bases: object

Common ancestro of Subtrunk and SoilStretch.

	
class business.gravity.stretches.Subtrunk(_energy_at_tail_point: float, _energy_at_head_point: float, _elevation_profile: business.commons.energy.ElevationProfile, _pressure_limit: pint.quantity.build_quantity_class.<locals>.Quantity, _water_flow: pint.quantity.build_quantity_class.<locals>.Quantity, _pathlength_starts_at: pint.quantity.build_quantity_class.<locals>.Quantity, _requires_metallic_pipes: bool, _trunk_name: str = 'Trunk default name')

	Bases: business.commons.loggers.InitLoggerMixin, business.commons.mixins.linear.SingleLinprogStretchMixin, business.gravity.mixins.trimming.TrunkStretchTrimmingMixin, business.gravity.stretching.linear.SwapStretchMixin, business.gravity.stretching.crawl.CrawlSolverStretchMixin, business.commons.traversals.PipeDesignPoolMixin, business.gravity.stretching.pressure.PressureStretchMixin, business.gravity.stretching.setters.SettersStretchMixin, business.gravity.stretches.SubstretchMixin

A class to represent a section of DendridicTrunk.

The ‘section’ is where the ‘hydraulic design problem’ is solved.
The section has boundary constraints, defined by the hydraulic energy
values at its ‘tail’ and ‘head’ ends.
The section has a rated working pressure set, and the hydraulic design
problem solution must comply with such pressure requirement.
The section has the same water flow as the Trunk it belongs to.

A section may correspond to the whole TrunkDesign.

Important

A TrunkDesign’s _elevation_profile list may be sliced and each slice is then
used to initialize a Subtrunk.

	
recursive_linear_solver()

	return the economically optimal pipes, using a ‘simpex’ approach

	
crawl()

	return the economically optimal pipes, fit for profiles traversing
deep valleys or overbanking ridges

	
property attempt_crawling

	A largest-smallest pipe approach, repeated recursively whenever
a solution exceedes the rated pressure limits.

Such approach aims at ‘bending’ the hydraulic energy line
and appears to be fit especially for surpassing deep valleys
or to overbank ridges between two contiguous vallyes.

Return the optimal pipes by investigating recursively whenever the
pressure limits are exceeded by solution obtained during the recursive
process.

	Returns

	

	Return type

	TODO

	
property pathlength

	Return the linar pathlength of the stretch.

	Returns

	the linear length of the profile pertaining to this section.

	Return type

	Quantity(“length”)

	
property recursive_linear_solver

	A linear optimization approach, repeated recursively whenever
a solution exceedes the rated pressure limits.

Return the optimal pipes by investigating recursively whenever the
pressure limits are exceeded by solution obtained during the recursive
process.

	Returns

	

	Return type

	TODO

	
property xxx_repr

	

business.gravity.trunks module

	
class business.gravity.trunks.AtmosphericTrunkCheck(**kwargs)

	Bases: business.gravity.trunks.TrunkCheck, business.gravity.trunks.AtmosphericTrunkMixin

A TrunkCheck, with both ends at atmospheric pressure.

Functionality: a Trunk, with both ends at atmospheric pressure,
modelled to solve the ‘hydarulic check problem’.

Notes

This is the case of a Trunk connecting directly two reservoirs,
or a spring to a reservoir.

	
class business.gravity.trunks.AtmosphericTrunkDesign(**kwargs)

	Bases: business.gravity.trunks.AtmosphericTrunkMixin, business.gravity.trunking.traversals.AtmosphericTraversalTrunkMixin, business.gravity.trunks.TrunkDesign

A TrunkDesign, with both ends at atmospheric pressure.

Functionality: a Trunk, with both ends at atmospheric pressure,
modelled to solve the ‘hydarulic design problem’.

Notes

This is the case of a Trunk connecting directly two reservoirs,
or a spring to a reservoir.

	
property as_subtrunk

	Return a Subtrunk spanning the entire AtmosphericTrunkDesign.

The subnode._pressure_limit is the lowest available from the catalog of pipes.

Important

Used to create a Subtrunk that covers the entire _elevation_profile of this node.
This is necessary when starting the get_traversal_solution method.
The subnode._pressure_limit is the lowest available since the atmospheric
node entails to use the lowest possible pressure.

	Returns

	the atmospheric stretch whose profile is the entire profile
sequence of this atmospheric Trunk.

	Return type

	AtmosphericSubtrunk

	
property get_open_channel_hgl_profile

	Return an EnergyProfile raised from the altrimetric profile by
one meter.

Its is used to render graphically the idea of ‘open flow’

	
class business.gravity.trunks.AtmosphericTrunkMixin

	Bases: object

Hook for a common ancestor to AtmosphericTrunkCheck
and AtmosphericTrunkDesign.

	
class business.gravity.trunks.BaseTrunk(**kwargs)

	Bases: business.commons.watermains.Watermain

Ancestor of TrunkCheck and TrunkDesign.

Functionality: define the mathematical properties of the node of a tree.
The BaseTrunk is ancestor of all trunks belonging to a gravity water
supply.

Note

	The gravity water supply is modelled as a dendridic network; each node

of this network is a BaseTrunk (or child).
* The Trunk is a pipeline along which the water flow is constant.
* The Trunks is composed of a sequence of different diameters,
pipe materials and pipe pressure specifications.

	
class business.gravity.trunks.TrunkCheck(**kwargs)

	Bases: business.commons.watermains.WatermainCheck, business.gravity.trunks.BaseTrunk

A BaseTrunk, modelled to solve the ‘hydarulic check problem’.

Functionality: define the properties required to solve
the ‘hydarulic check problem’ of a gravity-fed dendridic water supply.

	
property get_hydraulic_friction_per_unit_waterflow

	Return the hydraulic energy burned off along the Trunk
for a unitary water flow.

The hydraulic friction is dimensionless:
it represents meters of energy loss per meters of pipe length;
it is a percentage.

	Returns

	the energy burned off by friction along the whole length of the
Trunk, for a water flow of magnitude ‘1’ and units defined by the
pacakge constants.

	Return type

	float

	
property water_flow

	Set the water flow in the Trunk, in its piped segments and pipes.

Functionality: once the ‘hydraulic check problem’ is solved,
the code sets the resulting ‘water flow’ in each trunk of the
gravity pipeline. This mutator allows to set such value of the
water flow in each of the pipes, so that it will then be possible
to plot the hydraulic energy profile with the correct water flow.

	
class business.gravity.trunks.TrunkDesign(**kwargs)

	Bases: business.gravity.trunking.setters.TrunkDesignSettersMixin, business.gravity.trunking.traversals.TraversalsTrunkDesignMixin, business.commons.watermains.WatermainDesign, business.commons.traversals.PipeDesignPoolMixin, business.gravity.trunks.BaseTrunk

A BaseTrunk, modelled to solve the hydarulic design problem.

	
property as_subtrunk

	Return a ‘stretch’ which stretches along the entire length of this Trunk.

	Returns

	the stretch whose profile is the entire profile sequence of this Trunk.

	Return type

	Subtrunk

	
property get_my_water_demand_as_steady_flow

	Return the water flow required by the ‘hydraulic design problem’.

Return the steady flow, flowing continuously along the 24 hours of the
day, which satisfies the water demand associated with the Trunk.

business.gravity.arrangements package

Define the hydraulic problems for a ‘gravity’ water supply.

Submodules

business.gravity.arrangements.base module

Define a gravity-fed dendridic network, with all common
features to both the hydraulic design and hydraulic check problems.

	
class business.gravity.arrangements.base.BaseGravity(**kwargs)

	Bases: business.commons.loggers.InitLogger, business.gravity.views.plots.PlotGravityMixin

A class used to represent a gravity-fed dendridic water supply.

Functionality: provides the dendridic topology of its trunks. Provides also
base tree concepts such as: the calculation of the water flow.

Notes

Ancestor of GravityCheck
and GravityDesign.
Subclasses GravityChech and Gravity Design differ since they implement
the equations that describe the ‘hydraulic check’ and ‘hydraulic design’
problems respectvely.

business.gravity.arrangements.check module

Define the ‘hydraulic check problem’ for a ‘gravity’ water supply .

	
class business.gravity.arrangements.check.GravityCheck(**kwargs)

	Bases: business.gravity.solvers.check.DendridicCheckMixin, business.gravity.mixins.energy.CheckEnergyNetworkMixin, business.gravity.mixins.topology.CheckTrunksNetworkMixin, business.gravity.mixins.zoning.ZoningMixin, business.gravity.views.reports.GravityCheckReportMixin, business.tests.gravity.utils.GravityCheckTestMixin, business.gravity.arrangements.base.BaseGravity

Represent the ‘hydraulic check problem’ of a ‘gravity’ water supply.

Functionality: define and solve the mathematical equations that solve
the ‘hydarulic check problem’ of a gravity-fed dendridic water supply.

	Parameters

	
	trunks (iterable[TrunkCheck]) – the collection of TrunkCheck instances. The collection describes
the dendridic topology of the water supply.

	intake_elevation (Quantity(length)) – the elevation above the sea level of the point where water is
abstracted from a natural source and sent into the dendridic tree.

	
solve_hydraulic_check_problem()

	solves the ‘’hydarulic check problem’’ equations.

Notes

The water supply is composed of:
* a spring
* a dendridic network of conduits where water flow is constant
* The water flow is entirely gravity driven.
* The water flow is determined purely by the gravity force; therefore
there are no pressure reducing valves in the entire water supply.

The model of the water supply is composed of:
* the sequence of trunks whch represent the dendridic network.
* Trunks are topologically the nodes of a tree.
* The tree is represented by the adjacnecy list of each trunk.
Remark that:
* the trunks play the role of topological ‘nodes’ of a tree; they are not ‘edges’. The tree is composed of nodes without the need of introducing edges.
* each Trunk has a set of attributes, prefiex by, ‘tail’ and ‘head’ that refer to properties of the two ends of the pipeline.

business.gravity.arrangements.design module

Define the ‘hydraulic design problem’ for a ‘gravity’ water supply .

	
class business.gravity.arrangements.design.GravityDesign(**kwargs)

	Bases: business.gravity.mixins.flows.FlowDesignMixin, business.gravity.mixins.energy.EnergyDesignMixin, business.gravity.mixins.topology.DesignTrunksNetworkMixin, business.gravity.mixins.zoning.ZoningMixin, business.gravity.solvers.design.GravityDesignMixin, business.gravity.views.reports.GravityDesignReportMixin, business.tests.gravity.utils.GravityDesignTestMixin, business.gravity.arrangements.base.BaseGravity

Represent the gravity-fed dendridic water supply,
modelled to solve the ‘hydarulic check problem’.

Functionality: define and solve the mathematical equations that solve
the ‘hydarulic design problem’ of a gravity-fed dendridic water supply.

Note

Physical characteristic of the system.
A typical rural gravity-fed scheme has a simple topology: the source is a
spring. From there water flows by gravity to a main tank. Downstream of the
tank a distribution system is laid down, which is generally branched instead
of looped as fire flows and redundancy of distribution are not major
concerns.

The branched mains deliver water to the villages reservoirs and typically
follow the general topology of valleys and position of villages. In a
branched system, also called tree, the water has only one possible path from
the source to a village reservoir.

Service lines transmit the water from the village reservoirs to the end
customers (public fountains, water troughs for cattle….)

	
solve_hydraulic_design_problem()

	solve the hydarulic design problem and set the results in the
calculations report.

	
class DesignSolutionDetails(treatment: Any = None, trunks: Tuple[business.gravity.trunks.TrunkDesign] = None)

	Bases: tuple

The report of the technical calculations from the solution of the
hydraulIC design problem.

	
treatment

	futures: treatment may be implemented in a future version of this
software package

	
trunks

	maps every trunk of the dendridic network to the trunk’s report
of its ‘hydraulic design problem’.

	Type

	dictionary

	
property treatment

	Alias for field number 0

	
property trunks

	Alias for field number 1

business.gravity.mixins package

Submodules

business.gravity.mixins.airlock module

Provide ‘air-lock’ calculations in a tree-like topology.

	
class business.gravity.mixins.airlock.OpenEndsTrunkStretchAirlockMixin

	Bases: object

	Mixin gathering algorithms to detect the onset of an ‘air-lock’ in
	the pipes.

	
hgl_is_vapour_compliant()

	Boolean test checking whether a Trunk will suffer from ‘air-lock’.
limits.

	
hgl_prevents_air_locks()

	TODO:

	
property hgl_is_vapour_compliant

	
	Returns

	
	True – if the hydraulic pressure along the entire trunk length remains
above the minimal value that prevents air-lock formation

	False – otherwise

	
property hgl_prevents_air_locks

	
	Returns

	
	True – if the hydraulic pressure along the entire trunk length remains
above the minimal value that prevents air-lock formation

	False – otherwise

business.gravity.mixins.crawl module

	
class business.gravity.mixins.crawl.TrunkSolverStretchMixin

	Bases: object

	
property crawl_pipes

	

business.gravity.mixins.energy module

Provide ‘hydraulic energy’ calculations in a tree-like topology.

	
class business.gravity.mixins.energy.BaseEnergyMixin

	Bases: object

Algorithms for ‘hydraulic energy’ calculations in a gravity system.

	
class business.gravity.mixins.energy.CheckEnergyNetworkMixin

	Bases: business.gravity.mixins.energy.BaseEnergyMixin

Algorithms for hydraulic energy calculations needed when solving
the hydraulic check problem.

	
class business.gravity.mixins.energy.EnergyDesignMixin

	Bases: business.gravity.mixins.energy.BaseEnergyMixin

Algorithms for hydraulic energy calculations needed when solving
the ‘hydraulic design problem’.

business.gravity.mixins.flows module

Provide water flow calculations in a tree-like topology.

	
class business.gravity.mixins.flows.FlowDesignMixin

	Bases: object

Algorithms for ‘water flow’ calculations in a gravity system.

Functionality: evaluate the water demand as a sum of the water demand
for each downstream Trunk.

Ancestor of ZoningMixin and ZoningMixin.

Notes

Flows must be set before solving the ‘hydraulic design problem’.
The Trunks have the demand defined at their ‘head end’. The demand at
a ‘tail end’ is not part of this model since such demand is the
‘head end’ demand of the parent Trunk. The spring intake has no demand,
since this has no impact on the calculations of the pipes.

business.gravity.mixins.topology module

Provide algorithms and methods pertaining to the tree-like topology of the water supply.

	
class business.gravity.mixins.topology.BaseTrunksNetworkMixin

	Bases: object

Algorithms for common topographical calculations to BaseGravity.

Ancestor of CheckTrunksNetworkMixin and DesignTrunksNetworkMixin.

	
class business.gravity.mixins.topology.CheckTrunksNetworkMixin

	Bases: business.gravity.mixins.topology.BaseTrunksNetworkMixin

Topology algorithms specific to the hydraulic check problem.

	
class business.gravity.mixins.topology.DesignTrunksNetworkMixin

	Bases: business.gravity.mixins.topology.BaseTrunksNetworkMixin

Topology algorithms specific to the ‘hydraulic design problem’.

business.gravity.mixins.trimming module

Collection of algorithms that slice a Subtrunk into subsections.

	
class business.gravity.mixins.trimming.TrunkStretchTrimmingMixin

	Bases: object

Mixin gathering methods used to slice the Subtrunk profile or its
piped segments.

Slicing is required because a Subtrunk may have sections where the
hydraulic pressure limits are exceeded. It is therefore necessary to slice
a Subtrunk into valid and unacceptable sections.

business.gravity.mixins.zoning module

Define the concept of ‘splitting’ a tree into independent subtrees.

	
class business.gravity.mixins.zoning.ZoningMixin

	Bases: object

Algorithms for pressure zone calculations.

Functionality: split the dendridic network in subnetworks. Each subnetwork
originates from an atmospheric ‘tail end’.

Ancestor of ZoningMixin and ZoningMixin.

Notes

The hydraulic design and check problems are solved separately within
each subtrunk. From a mathematical perspective, each subtrunk is a
water supply system, with water under pressure.

business.gravity.solvers package

Submodules

business.gravity.solvers.check module

Solve the ‘hydraulic check problem’ in a ‘gravity’ water supply.

	
class business.gravity.solvers.check.DendridicCheckMixin

	Bases: object

Methods used by GravityCheck to solve a system on algebraic equations.

	
property solve_hydraulic_check_problem

	Attempt solving a system of algebraic equations.

Functionality: solves the equations of the ‘hydraulic check problem’.
The preconditions ensure that the equations are meaningful.
The postcondition produces a report of the calculations.

business.gravity.solvers.design module

Provide methods used to solve the gravity ‘hydraulic design problem’.

Notes

The decision variables are the pipes
The obejctive function is to minimize the cost of the pipes

	
class business.gravity.solvers.design.GravityDesignMixin

	Bases: object

Algorithms to solve the ‘hydraulic design problem’.

	
solve_hydraulic_design_problem(strategy: str = 'fixed_flows') → None

	Solve the ‘hydarulic design problem’, if init data were provided correctly.

Acts as a ‘layer’ between the algorithm and the client code.
The layer ensures separation of concerns:
* the algorithm attempts to find a solution
* this method either reports the algorithm outcome
or raises and logs exceptions

	Parameters

	strategy (str) – the name of the design algorithm to be invoked (default is TODO)

	Raises

	ImproperlyConfiguredTrunk – if the initkwargs were mistaken

business.gravity.stretching package

Submodules

business.gravity.stretching.crawl module

Implement the ‘crawl’ algorithm for the Subtrunk.

	
class business.gravity.stretching.crawl.CrawlSolverStretchMixin

	Bases: object

Algorithms to return sequences of commercial pipes.

Functionality: return sequences of commercial pipes
while performing systematic search of the hydraulic grade line
inside a Subtrunk.

Notes

These sequences are used when performing systematic search of the
various possible hydrauli grade lines.

business.gravity.stretching.linear module

Implement the ‘simplex’ algorithm for the Subtrunk.

	
class business.gravity.stretching.linear.SwapStretchMixin

	Bases: object

Algorithms used to optimize the trunk stretch running
the simplex just once.

Functionality: perform systematic search of
the hydraulic grade line inside a Subtrunk.

	
attempt_simplex()

	Return the optimal solution if this entails pressure compliance
of the energy line

	
swap_piped_segments()

	Swap in-place the order of the trunk stretch’s piped segments

	
attempt_simplex(message) → List[business.helpers.definitions.PipedSegmentDesign]

	

	
property swap_piped_segments

	Swap in-place the order of the trunk stretch’s piped segments.

business.gravity.stretching.pressure module

Provide pressure calculations for the Subtrunk.

	
class business.gravity.stretching.pressure.PressureStretchMixin

	Bases: object

A mixin gathering methods that deal with hydraulic pressure.

Functionality: analyse the hydraulic pressure
while performing systematic search of the hydraulic grade line
inside a Subtrunk.

	
property hgl_is_pressure_compliant

	Return True if the hydraulic grade line is pressure compliant.
False otherwise.

The check is run considering the current status of the Subtrunk,
namely:
* its piped segments
* its hydraulic energy at ‘tail’ and ‘head’ ends
* its water flow

	
property hgl_lies_above_elevation_profile

	Check if the hydraulic energy line is ‘always above’ the soil.

	Returns

	
	True – if the hydraulic grade line lies above the elevation
profile for the whole extent of the Subtrunk.

	False – otherwise.

	Remarks

	——-

	The inheritor *AtmosphericSubtrunk overrides it.*

business.gravity.stretching.setters module

Provide mutators for the Subtrunk.

	
class business.gravity.stretching.setters.SettersStretchMixin

	Bases: object

The mixin gathering setters of Subtrunk.

	
property pipes_in_pair

	

	
property segments_in_pair

	Get or set the a sequence of exactly two piped segments.

Setting the two piped segments will reconfigure the energy line
and evaluate the swivel point, i.e.: the point where the energy line
changes its slope due to water flowing from the first to the
second piped segment.

The most economical pipes (i.e.: the optimal solution) for a
Subtrunk is composed by two piped segments (ref.: Dantzig theorem).
Setting this couple of piped segments sets the inner
variables _tail_side_segment and _head_side_segment.

Once this setter completes, the energy line will change and it is
a priori not known whether it is pressure compliant. Several
algorithms in the code check and take action if there is no compliance.

business.gravity.trunking package

Submodules

business.gravity.trunking.setters module

Provide mutators for the TrunkDesign.

	
class business.gravity.trunking.setters.TrunkDesignSettersMixin

	Bases: object

The mixin gathering setters of TrunkDesign.

	
energy_at_tail_point

	Get or set the hydraulic energy at the ‘tail’ end of the Trunk

	
energy_at_head_point

	Get or set the hydraulic energy at the ‘head’ end of the Trunk

	
property energy_at_head_point

	Get or set the hydraulic energy at the ‘head’ end of the Trunk.

Setting the hydraulic energy to a new value will update the pressure
at the ‘head’ end.

Setting the hydraulic energy to a new value will not modify the
hydraulic energy line or the piped_segments in the Trunk.

	
property energy_at_tail_point

	Get or set the hydraulic energy at the ‘tail’ end of the Trunk.

Setting the hydraulic energy to a new value will update the pressure
at the ‘tail’ end.

Setting the hydraulic energy to a new value will not modify the
hydraulic energy line or the piped_segments in the Trunk.
Usually, once the energy_at_tail_point is set, the code runs the
simplex solver and then sets the piped segments to the Trunk. Then
it evaluates the new water energy line, and finally checks for
hydraulic pressure compliance of the energy line.
This setter is then run at an initial stage of the design algorithm.

business.gravity.trunking.traversals module

Provide algorithms solving the ‘hydraulic design problem’ within a Trunk.

	
class business.gravity.trunking.traversals.AtmosphericTraversalTrunkMixin

	Bases: object

	
property get_traversal_solution

	it dispatches always the
_delta_zero approach when solving the ‘hydraulic design problem’.

An AtmosphericTrunkDesign will always have zero hydraulic
pressure at its ends and therefore its traversal algorithm is
surely the _delta_zero.

	Type

	Override the parent class method

	
class business.gravity.trunking.traversals.TraversalsTrunkDesignMixin

	Bases: business.commons.traversals.TraversalsTrunkOrStretchMixin

Algorithms to find the optimal piped segments in the Trunk.

	
get_traversal_solution()

	return the optimal piped segments, with given water flow and
energy constraints at ‘tail’ and ‘head’ ends

	
property get_traversal_solution

	Return the optimal piped segments, with given water flow and
energy constraints at ‘tail’ and ‘head’ ends.

This method dispatches the execution to specific methods
depending on the number of rated working pressure classes that the
hydraulic energy line crosses from ‘tail’ to ‘head’.

	Returns

	
	either – list(PipedSegment), if a solution was found

	or – list(simplex_failure_list) otherwise
TODO: questo simbolo di [] confonde! Non è chiaro se restituisci una ‘lista di liste’ o cosa! E lo hai scritto tu.

	TODOs

	—–

	il fatto che questa def restituisce either…or la rende difficile.

	Ricorda però che siamo dentro una coroutine e non si possono sollevare le eccezioni.

	
business.gravity.trunking.traversals.filter_accomplished_solutions(function: Callable) → Callable

	

business.gravity.views package

Submodules

business.gravity.views.definitions module

Collection of data structures used to report the hydraulic design and check calculations.

	
class business.gravity.views.definitions.ZoneDesignReport(design_is_successful: bool = None, optimized_solution: Set[business.commons.definitions.TraversalSolution] = None, errors: dict = None)

	Bases: object

Record storing outcomes of the ‘hydraulic design’ in a pressure zone.

	
design_is_successful: bool = None

	

	
errors: dict = None

	

	
optimized_solution: Set[business.commons.definitions.TraversalSolution] = None

	

business.gravity.views.plots module

Provide matplotlib functionalities to plot the data.

Notes

This module is based on third-party <matplotlib> library.

	
class business.gravity.views.plots.PlotGravityMixin

	Bases: business.commons.views.plots.PlotStreamMixin

Algorithms to plot all Trunks in a dendridic network.

business.gravity.views.reports module

Provide functionalities to report the data in textual form.

	
class business.gravity.views.reports.BaseGravityReportMixin

	Bases: object

Methods used by BaseGravity to output the results from hydraulics equations.

	
class business.gravity.views.reports.GravityCheckReportMixin

	Bases: business.gravity.views.reports.BaseGravityReportMixin

Method to output the results from ‘hydraulic check problem’.

	
property get_ux_context

	Return the dictionary that Django uses to render a template.

	
class business.gravity.views.reports.GravityDesignReportMixin

	Bases: business.gravity.views.reports.BaseGravityReportMixin

Method to output the results from ‘hydraulic check problem’.

	
property get_ux_context

	Return the dictionary that Django uses to render a template.

Functionality: create a check problem, solve and return its report
by returning its template context.

Notes

Performs three steps:
* Clone this instance in a Check problem.
* Solve the check problem in the clone.
* Show the results from the check problem.

business.groundwater package

This package models the borehole and the acquifer as a whole.

Classes

	
	BoreholeCheck:
	performs hydraulic check calculations once the hydraulic hardware
is set

	
	BoreholeDesign:
	allows to design the borehole the once the demand and the environmental
data are set

	Exceptions: (see exceptions)
	exceptions raised by the Borehole are intercepted by the PumpStation
during the execution of hydraulic design and hydraulic check calculations.

Submodules

business.groundwater.boreholes module

Models how much water may be abstracted from a borehole.

	
class business.groundwater.boreholes.BaseBorehole(**kwargs)

	Bases: business.groundwater.plots.PerformancePlotMixin, business.commons.loggers.InitLogger

Represent (simplistically) a borehole.

Functionality: the class takes in account only two parameters:
* the flow-dwl relationship
* the drilled bore

Notes

More specifically, other parameters are not included in this model:
* drilled depth
* depth of solid casing
* depth of screen.
These shall be included in a future version.

Also, the flow-dwl relation is passed as a tuple of 2-tuples. This version
does not include any study of step-tests, recoveryand continuous discharge
test.
The maximum licensed abstraction is assumerd to be the highest flow
for which the flow-dwl relation was provided.

When the pump is started the water in the borehole lowers its level.
This model is in charge of evaluating the flow vs. drawdown curve.
The greater the flow rate through the pump, the larger the drop
in water table elevation in the borehole.

	
_get_max_allowed_water_flow : Quantity("volume/time")

	get the maximum amount of water that may be abstracted,

	
get_pump_depth_down_the_hole : Quantity("length")

	get the depth of the pump below ground surface,

	
water_flow : Quantity("volume/time")

	get the abstracted water flow.

	
property dwl

	Return the current drawdown.

	Returns

	

	Return type

	Quantity(“length”)

	
property get_flow_range

	Return a sequence of equidistant water flows.

The range of water flows spans from ‘zero’ to the maximum sustainable
yield from the borehole (i.e.: from the water source).

The return values are rounded since this appeared to be necessary
during the hydraulic friction calculations (refer to methods
_darcy_weisbach and _gs042)

	Returns

	an array of dimensional values (Quantity(“volume/time”))
with np.float64 magnitudes and rounded.

	Return type

	np.array

	
property water_flow

	Get or set the current pumped water flow.

Setting the flow to a new value will reconfigure the borehole
and evaluate a new value of drawdown and pump setting.

	Raises

	AquiferDepletion – if the proposed water flow exceeds the limits imposed by
 _get_max_allowed_water_flow.

	
class business.groundwater.boreholes.BoreholeCheck(**kwargs)

	Bases: business.groundwater.boreholes.BaseBorehole

Override a borehole and add functionalities to solve the hydraulic check
problem.

Note

A check borehole does not need the drilled bore (unlike the design
borehole) because in the check problem the riser bore is already known
from input data. The drilled bore is therefore useless for the hydraulic
check calculations.

	
property get_pump_depth_down_the_hole

	Return the pump depth set by the input data of the hydraulic check problem.

Note

This method is present in both BoreholeCheck and BoreholeDesign
but the two implementations differ, rerlecting the different nature of
the hydraulic design and hydraulic check problems.

	Returns

	the input data.

	Return type

	Quantity(“length”)

	
property water_flow

	Get or set the current pumped water flow.

Setting the flow to a new value will reconfigure the borehole
and evaluate a new value of drawdown and pump setting.

	Raises

	AquiferDepletion – if the proposed water flow exceeds the limits imposed by
 _get_max_allowed_water_flow.

	
class business.groundwater.boreholes.BoreholeDesign(**kwargs)

	Bases: business.groundwater.boreholes.BaseBorehole

Borehole for calculations during the ‘hydraulic design’.

A ‘design’ borehole has a known dwl curve; therefore it has also
a known drilled bore. More precisely, a ‘design’ borehole is a
borehole considered for a ‘hydraulic design problem’ of a water supply
system, but it is assumed that the borehole itsef was already drilled,
and its aquifer studied through the pumpin test.

	
property get_pump_depth_down_the_hole

	Return the suitable pump depth compatible with the pumped flow.

	Returns

	the minimum suitable depth of the pump body.
Positive values point ‘into’ the ground.

	Return type

	Quantity(“length”)

	
class business.groundwater.boreholes.DwlVsFlowPoint(water_flow: pint.quantity.build_quantity_class.<locals>.Quantity, dwl: pint.quantity.build_quantity_class.<locals>.Quantity)

	Bases: tuple

Represent a point in the 2-d planee whose coordinates are
“_water_flow” and “dwl”.

_water_flow - the abscissa: abstracted _water_flow from borehole
dwl - the ordinate: observed water level when pumping at _water_flow rate.

	Units of measure:
	
	_water_flow: Quantity(“volume/time”)

	dwl: Quantity(“length”)

	
property dwl

	Alias for field number 1

	
property water_flow

	Alias for field number 0

business.groundwater.constants module

Collection of constants used and exported by ‘groundwater’ package.

	
business.groundwater.constants.DEFAULT_SUBMERGENCE = <Quantity(3, 'meter')>

	Prescribes the minimum difference between the pump depth and the drawdown.

business.groundwater.exceptions module

Collection of the exceptions raised inside groundwater package.

	
exception business.groundwater.exceptions.AquiferDepletion

	Bases: business.groundwater.exceptions.UnadvisableExploitation

A BaseBorehole is set with exaggerate _water_flow.

	
exception business.groundwater.exceptions.CorruptedDrawdownData

	Bases: business.groundwater.exceptions.ImproperlyConfiguredBorehole

A drawdown csv file can be read but the data make no logical sense.

Example

	the csv columns contain string instead of positive floats,

	the csv columns are unexpectedly empty.

	
exception business.groundwater.exceptions.ImproperlyConfiguredBorehole

	Bases: business.commons.exceptions.ImproperlyConfiguredWaterSystem

Some data needed to describe the BaseBorehole (and its derived classes)
are missing.

	
exception business.groundwater.exceptions.NonsensicalDrawdownData

	Bases: business.groundwater.exceptions.ImproperlyConfiguredBorehole

A file can be read but the data make no logical sense.

Raised when the csv data are not monotonic, where expected.

	
exception business.groundwater.exceptions.PumpRunningDry

	Bases: business.groundwater.exceptions.UnadvisableExploitation

A BaseBorehole is set with _water_flow so high that the water
level descreases and leaves the pump run dry.

	
exception business.groundwater.exceptions.SwlDataMissing

	Bases: business.groundwater.exceptions.ImproperlyConfiguredBorehole

The static water level could not be inferred from anay data.

Raised when the first row of a csv drawdown file does not bear
the value 0 for the water flow.

	
exception business.groundwater.exceptions.UnadvisableExploitation

	Bases: business.commons.exceptions.UnadvisableDuty

The rate of pumping is excessive and may damage the borehole.

This exceptions may be raised when too much water is abstracted from the
borehole.
The classes that ovveride this exception detail the various problems
that may occur with excessive abstraction of water.
HAESTADT

business.groundwater.plots module

Provide matplotlib functionalities to plot the data.

Notes

This module is based on third-party <matplotlib> library.

	
class business.groundwater.plots.PerformancePlotMixin

	Bases: object

A mixin class used to lookup drawdown data and then format them
according to matplotlib interface.

	
get_dwl_curve_as_matplotlib()

	returns the drawdown curve

	
property get_dwl_curve_as_matplotlib

	Return the drawdown vs. the water flow.

The drawdown curve is a collection of (flow, drawdown) discrete points.

	Returns

	
	2-tuple of N-tuples

	first N-tuple (Quantity(“length”))

	second N-tuple (Quantity(“volume/time”)) – the first tuple is the sequence of discrete values of drawdown
the second tuple is the sequence of discrete values of water flows

business.groundwater.units module

Collection of the units used by groundwater package.
PIERGIORGIO2: è giusto dire che groundwater è un package?

	
business.groundwater.units.DWL_UNITS = <Unit('meter')>

	Prescribes the units to measure the water level in inside the borehole.

	
business.groundwater.units.SWL_UNIT = <Unit('meter')>

	Prescribes the units to measure the water level in inside the borehole.

business.helpers package

Collection of code architectural snippets essential for bootstrapping components

Submodules

business.helpers.definitions module

Collection of data structures used throughout all the other packages
that constitute ‘ruralwater’.
PIERGIORGIO2: Se ‘helpers’ è un package allora ‘ruralwater’ cosa è? Mi riferisco a come scrivere la frase sopra.

	Data structures
	
	EngineWorkingConditions
	requirements to select a engine from a catalog of commercial engines.

	PipeWorkingConditions: (namedtuple)
	requirements to select a pipe from a catalog of commercial pipes.

	RiserAssemblyWorkingConditions
	defines the duty a down-the-hole shaft riser must be able to sustain.

	SubmersibleWorkingConditions
	requirements to select a submersible pump from a catalog of commercial pumps.

	
class business.helpers.definitions.EngineWorkingConditions(brake_power, rpm)

	Bases: tuple

The requirements the engine must be able to satify.

Notes

May be used either to select an engine off a catalog of engines commercially
available.
May be used to evaluate the engine load and consumption at the given
woring conditions.

	
brake_power

	the engine brake power TODO: HAESTADT, cerca definizione

	Type

	Quantity(“TODO”) float TODO: non è un float ma una quantity; scrivi le unità di misura corrette.

	
rpm

	the engine crankshaft rotational speed

	Type

	Quantity(“TODO”) float TODO: non è un float ma una quantity; scrivi le unità di misura corrette.

	
property brake_power

	Alias for field number 0

	
property rpm

	Alias for field number 1

	
class business.helpers.definitions.FlowVsEnergyCurve(typed_sequence)

	Bases: business.commons.energy.PlotBaseEnergyProfileMixin, business.helpers.utils.TypedList

Sequence of (water_flow, water_energy) points that approximate
the flow-hydraulic_energy curve in nature.

Note

Overrides TypedList to ensure that each point of the sequence is a (flow, energy)
tuple.

	
as_linestring:

	Geometric representation of the curve in a 2-d plane.

	
property as_linestring

	Return this sequence as a shapely object.

Represent a polygonal chain in the 2-d plane which is the
piecewise linear approximation of the flow-hydraulic_energy curve in nature.

Important

In geometry, a polygonal chain is a connected series of line segments.
Return this record as a shapely object.
Refer to https://pypi.org/project/Shapely/ for a description of the
shapely package.

	Returns

	The shapely LineString instance.
For each of the points of the polygonal chain,
magnitudes are expressed in the unit of measure set in
ruralwater.helpers.units, see HYDRAULIC_ENERGY_UNITS for the
energy and WATERFLOW_UNITS for the water flow.

	Return type

	shapely.geometry.LineString

	
get_intersection_with(other)

	

	
misses(other)

	

	
class business.helpers.definitions.FlowVsEnergyPoint(hydraulic_energy: pint.quantity.build_quantity_class.<locals>.Quantity, water_flow: pint.quantity.build_quantity_class.<locals>.Quantity)

	Bases: object

A class used to represent the duty of a pump.

	
water_flow

	the abstracted water flow from the borehole

	Type

	Quantity(“volume/time”)

	
hydraulic_energy

	the hydraulic energy provided to or required by the water flow.

	Type

	Quantity(“TODO”)

	
as_shapely_point()

	Geometric representation of the record in a 2-d plane.

Notes

	Overloads __add__, __sub__
	In a pump station (class ElectriclessDesign) the flow of water
is the same through all the mechanical parts (borehole colum, feeder,
pump body, shaft) therefore the duty is a sum of energy requirements,
while the water_flow value remains constant.

	
property as_shapely_point

	Return this record as a shapely object.

Represent a point in the 2-d plane whose abscissa matches the
hydraulic energy and whose ordinate matches the water flow.
Refer to https://pypi.org/project/Shapely/ for a description of the
shapely package.

	Returns

	The shapely point instance.
Magnitudes are expressed in the unit of measure set in
ruralwater.helpers.units, see HYDRAULIC_ENERGY_UNITS for the
energy and WATERFLOW_UNITS for the water flow.

	Return type

	shapely.geometry.Point

	
hydraulic_energy: pint.quantity.build_quantity_class.<locals>.Quantity

	

	
water_flow: pint.quantity.build_quantity_class.<locals>.Quantity

	

	
class business.helpers.definitions.PipeWorkingConditions(water_flow, rated_working_pressure)

	Bases: tuple

The requirements the pipe must be able to satify.

Notes

May be used to select a pipe off a catalog of pipes commercially
available.

	
water_flow

	the water flow throughout the pipe

	Type

	Quantity(“volume/time”, float)

	
rated_working_pressure

	the working pressure for which the pipe is rated by the manufacturer

	Type

	Quantity(“TODO”) float TODO: non è un float ma una quantity; scrivi le unità di misura corrette.

	
property rated_working_pressure

	Alias for field number 1

	
property water_flow

	Alias for field number 0

	
class business.helpers.definitions.PipedSegment(_commercial_pipe: str, _starts_at_pathlength: float, _ends_at_pathlength: float = None)

	Bases: object

A class used to represent a stretch of a commercial pipe.
INGLESE: non è uno stretch ma….?

	
_commercial_pipe

	the commercial pipe

	Type

	Pipe

	
_starts_at_pathlength

	the linear distance where the stretch begins

	Type

	Quantity(“length”)

	
_ends_at_pathlength

	the linear distance where the stretch ends. It is optional: either it
can be assigned or it can be evaluated looping in the ordered
collection of PipedSegments.

	Type

	Quantity(“length”), optional

	
Linear distances refer to a zero which is defined in *Trunk* class.

	

	
water_flow()

	Geometric representation of the record in a 2-d plane.

	
burned_energy()

	the amount of hydraulic energy burned off at a given water_flow

	
pathlength()

	the linear extension of the stretch

	
penalty()

	the investment cost to build the stretch

	
property burned_energy

	Return the hydraulic energy burned off by the commercial pipe.

Note

Precondition: self._ends_at_pathlength is set.

	
property pathlength

	Return the linear length of the stretch instance.

Note

Precondition: self._ends_at_pathlength is set.

	
class business.helpers.definitions.PipedSegmentCheck(_commercial_pipe: str, _starts_at_pathlength: float, _ends_at_pathlength: float = None)

	Bases: business.helpers.definitions.PipedSegment

	
get_headloss_at_sample_flow(sample_water_flow)

	

	
get_humanized_pipe_name()

	Return the name of the commercial pipe, suitable for django templates.

Functionality: accessing the name of the commercial pipe cannot be
achieved simply using the django template language because the
language must access two custom template filters in sequence.
These filters are needed to access dictionary keys (_commercial_pipe
and _natural_key_as_string) wich have an underscore prepended.
It’s too much logic to be put in the template (and makes the line
of code to be too long). Therefore we resort to this method, which may
be accessed directly using the {{ context.key }} syntax of the
template language.

	Returns

	the unique identifier of a commercial pipe, formatted as
‘human readable’, with underscores replaced by spaces.

	Return type

	str

	
property non_fractional_burned_energy

	Return the hydraulic energy burned off by the commercial pipe,
if friction is evaluated with integer-powers only.

	
property water_flow

	

	
class business.helpers.definitions.PipedSegmentDesign(_commercial_pipe: str, _starts_at_pathlength: float, _ends_at_pathlength: float = None)

	Bases: business.helpers.definitions.PipedSegment

	
property water_flow

	Set the water flow in the commercial pipe.

	
class business.helpers.definitions.RiserAssemblyWorkingConditions(water_flow, pump_depth)

	Bases: tuple

The requirements the monopump riser assembly must be able to satify.

Notes

May be used to select a riser and shaft combination off a catalog of
commercially available combinations.

	
water_flow

	the water flow throughout the riser assembly pipe.

	Type

	Quantity(“volume/time”, float)

	
pump_depth

	the depth at which the pump body is set.

	Type

	Quantity(“length”, float)

	
property pump_depth

	Alias for field number 1

	
property water_flow

	Alias for field number 0

	
class business.helpers.definitions.SubmersibleWorkingConditions(water_flow)

	Bases: tuple

The requirements the submersible pump must be able to satify.

Notes

May be used either to select an submersible pump off a catalog of submersible
pumps commercially available.
May be used to evaluate the engine load and consumption at the given
woring conditions.

	
water_flow

	the water flow throughout the pump.

	Type

	Quantity(“volume/time”, float)

	
property water_flow

	Alias for field number 0

business.helpers.guards module

Collection of utilities to chek the dimension of a physical quantities.

All physical variables in ruralwater are expressed as dimensional
quantities, thanks to the ‘pint’ package.
These methods are used by property setters as precondition check.

	Data structures
	
	check_is_waterflow:
	ensure the variable under observation represents a water flow.

	
business.helpers.guards.check_is_column_working_conditions(function)

	

	
business.helpers.guards.check_is_pipe_working_conditions(function)

	

	
business.helpers.guards.check_is_pressure(function)

	Chek a precondition: if the ‘value’ passed to a setter is meaningful.

Checks that the value passed to a setter represents a geometric distance.

	Parameters

	function (@property.setter) – a setter method of a class

	Raises

	ValueError – If value has not the prescribed instance, dimensionality
 and magnitude.

Example

It is used as a guard when creating a rated pressure profile starting from
an altimetric profile.

	
business.helpers.guards.check_is_rpm(function)

	Chek a precondition: if the ‘value’ passed to a setter is meaningful.

Checks that the value passed to a setter represents an angular speed.

	Parameters

	function (@property.setter) – a setter method of a class

	Raises

	ValueError – If value has not the prescribed instance, dimensionality
 and magnitude.

Example

It is used as a guard when setting rotational speed of engines,
pumps, shafts and centrifugal clutches.

	
business.helpers.guards.check_is_vertical_shift(function)

	Chek a precondition: if the ‘value’ passed to a setter is meaningful.

Checks that the value passed to a setter represents a geometric distance.

	Parameters

	function (@property.setter) – a setter method of a class

	Raises

	ValueError – If value has not the prescribed instance, dimensionality
 and magnitude.

Example

It is used as a guard when creating a rated pressure profile starting from
an altimetric profile.

	
business.helpers.guards.check_is_waterflow(function)

	Chek a precondition: if the ‘value’ passed to a setter is meaningful.

Checks that the value passed to a setter represents a water flow.

	Parameters

	function (@property.setter) – a setter method of a class

	Raises

	ValueError – If value has not the prescribed instance, dimensionality
 and magnitude.

business.helpers.roundings module

Collection of constants used to round physical quantities magnitude.

It is used to render the logging of physical values easier to read,
cutting away unnecessary decimal digits .

business.helpers.units module

Provide utilities and constants for modelling dimensional units.

Notes

This module is based on third-party <pint> library.

	
business.helpers.units.BSDC_UNITS = <Unit('gram / kilowatt_hour')>

	Prescribes the units to express the specific diesel consumption

	
business.helpers.units.DAILY_DEMAND_UNITS = <Unit('liter / day')>

	Prescribes the units to express the daily water demand.

	
business.helpers.units.DIAMETER_UNITS = <Unit('millimeter')>

	namely, the
inner diameter of the borehole and the width of the pipes inside it.

	Type

	Prescribes the units to express “width” inside the borehole

	
business.helpers.units.DISTANCE_UNITS = <Unit('meter')>

	Prescribes the units to express linear distances.
Definitions:

	downrange
	xxx

	elevation
	xxx

	pathlength:
	linear distance along the pipe trench

Prescribes the units to express pipe trench profiles.

	
business.helpers.units.ELECTRIC_ENERGY_UNITS = <Unit('hour * kilowatt')>

	Prescribes the units to express the electric energy consumed each hour.

	
business.helpers.units.POWER_UNITS = <Unit('kilowatt')>

	Prescribes the units to express the mechanical power

	
business.helpers.units.PULLEY_DIAMETER_UNITS = <Unit('centimeter')>

	Prescribes the units to express pulley diameters.

	
business.helpers.units.PUMP_BODY_VERTICAL_ENCUMBRANCE = <Unit('meter')>

	Prescribes the units to express how ‘long’ is the pump body.

	
business.helpers.units.RPM_UNITS = <Unit('revolutions_per_minute')>

	Prescribes the units to express rotational speed of shafts.

	
business.helpers.units.WATERFLOW_UNITS = <Unit('liter / second')>

	Prescribes the units to express the water flow.

	
business.helpers.units.as_decimal(quantity)

	Return a Q_ with a magnitude cast to a python’s decimal.Decimal.

Example

Allows to perform cost estimates by multiplying a float (such as
the length of meters of a commercial pipe) times a Decimal (that is, a
unit price).

	Parameters

	quantity (helpers.business_units.Q_) – the quantity whose magnitude is to cast to integer.

	Returns

	an instance of helpers.business_units.Q_ with a magnitude cast to decimal.Decimal

	Return type

	helpers.business_units.Q_

	
business.helpers.units.as_integer(quantity)

	Return a Q_ with a magnitude cast to an integer.

Example

Converts logs such as ‘downrange=<Quantity(3045.1000000000004, ‘meter’)>
into a more readable ‘downrange=<Quantity(3045, ‘meter’)>

	Parameters

	quantity (helpers.business_units.Q_) – the quantity whose magnitude is to cast to integer.

	Returns

	an instance of helpers.business_units.Q_ with a magnitude cast to integer

	Return type

	helpers.business_units.Q_

	
business.helpers.units.as_rounded(quantity, decimal_digits=0)

	Return a Q_ with a magnitude rounded to some decimal places.

Example

Converts logs such as ‘downrange=<Quantity(3045.1000000000004, ‘meter’)>
into a more readable ‘downrange=<Quantity(3045, ‘meter’)>

	Parameters

	
	quantity (helpers.business_units.Q_) – the quantity whose magnitude is to round.

	decimal_digits (int) – the number of decimal digits in the return value magnitude.

	Returns

	an instance of helpers.business_units.Q_ with a rounded magnitude

	Return type

	helpers.business_units.Q_

business.helpers.utils module

Programming language utilities.

	
class business.helpers.utils.TypedList(ok_type, iterable=[])

	Bases: collections.abc.MutableSequence, business.commons.loggers.InitLogger

Create a list that accepts only elements of a given type.

	Raises

	TypedListError – if trying to add an element not conform to the required type.

	
exception TypedListError

	Bases: TypeError, business.commons.exceptions.RuralwaterException

An element to append to a typed list is not of the valid type.

	
insert(item, value)

	S.insert(index, value) – insert value before index

	
class business.helpers.utils.TypedSet(ok_type, iterable=())

	Bases: collections.abc.MutableSet, business.commons.loggers.InitLogger

Create a list that accepts only elements of a given type.

	Raises

	TypedListError – if trying to add an element not conform to the required type.

	
exception TypedSetError

	Bases: TypeError, business.commons.exceptions.RuralwaterException

An item to append to a typed set is not of the valid type.

	
add(item)

	Add an element.

	
discard(item)

	Remove an element. Do not raise an exception if absent.

	
business.helpers.utils.ajaxpolling(message)

	

	
business.helpers.utils.coroutine(func)

	Do prime a coroutine advancing to the first yield statement.

	
business.helpers.utils.do_postcondition(method)

	Invoke a method after another method is invoked.

	Parameters

	method (callable) – the class instance method which represents the do_postcondition.
method must be decorated as @property.

	
business.helpers.utils.do_precondition(method)

	Invoke a method before another method is invoked.

	Parameters

	method (callable) – the class instance method which represents the check_precondition.
method must be decorated with @property.

	
business.helpers.utils.lazyprop(fn)

	Cache and return value of property after the first time it is evaluated.

business.interface package

business.manufacturers package

Subpackages

	business.manufacturers.catalogs package

	business.manufacturers.components package

	business.manufacturers.exceptions package

Submodules

business.manufacturers.constants module

Collection of constants used in both the hydraulic design and check problems.

	
business.manufacturers.constants.DIESEL_SPECIFIC_WEIGHT = <Quantity(0.835, 'dimensionless')>

	Prescribes the specific weigth of fuel, used to run consumption calculations.

	
business.manufacturers.constants.ENGINE_MAX_ADVISABLE_LOAD = 1

	Prescribes the maximum engine load before wear occours.

	
business.manufacturers.constants.ENGINE_MIN_ADVISABLE_LOAD = 0.1

	Prescribes the minimal engine load before carbonation and wear occour.

	
business.manufacturers.constants.MAX_ADVISABLE_FLOW_SPEED = <Quantity(12.0, 'meter / second')>

	Prescribes the maximal speed of water inside the pipes to prevent wear.

	
business.manufacturers.constants.MAX_ADVISABLE_VEE_BELT_TRANSMISSION_RATIO = 1.67

	Prescribes the maximum vee-belt ratio before slipping occours.

	
business.manufacturers.constants.MIN_ADVISABLE_FLOW_SPEED = <Quantity(0.0005, 'meter / second')>

	Prescribes the minimal speed of water inside the pipes to prevent sedimentation.

	
business.manufacturers.constants.MIN_CLUTCH_ENGAGEMENT_RPM_MAGNITUDE = 1600

	Prescribes the minimal crankshaft speed to allow a centrifugal clutch to engage.

	
business.manufacturers.constants.PREFERRED_FLOW_SPEED = <Quantity(5, 'foot / second')>

	Prescribes the optimal speed of water inside the pipes.

	
business.manufacturers.constants.VEE_BELTS_TRANSMISSION_EFFICIENCY = 0.96

	Prescribes a default mechanical power loss between belts and pulleys.

business.manufacturers.readers module

Define readers of json data, able to populate hydraulic hardware dataclasses.

	
class business.manufacturers.readers.BaseComponentLoader(api_uri: str)

	Bases: business.commons.loggers.InitLogger

Mixin gathering common method to read the data and assign the business_units.

	
api_uri

	the uri of the json source providing the data

	
get_instances

	Return a sequence of namedtuples storing the hydraulic hardware data

	
_get_dimensional_records_as_tuple

	Return a tuple of dictionaries storing dimensional data

	
property get_instances

	Return a sequence of namedtuples storing the hydraulic hardware data.

	Returns

	the sequence of namedtuples with the data. Each inheritor has a
specific namedtuple.

	Return type

	Tuple[Namedtuple]

Example

DriveheadLoader will return a tuple of
manufacturers.components.Drivehead
ShaftLoader will return a tuple of
manufacturers.components.Shaft

	
class business.manufacturers.readers.DriveheadLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

Adapter from a json source of progressive cavity pump driveheads.

	
_component_class

	the dataclass use to represent progressive cavity pump drivehead

	
class business.manufacturers.readers.EngineCheckLoader(api_uri: str)

	Bases: business.manufacturers.readers.EngineLoader

	
class business.manufacturers.readers.EngineDesignLoader(api_uri: str)

	Bases: business.manufacturers.readers.EngineLoader

	
class business.manufacturers.readers.EngineLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

Adapter from a json source of diesel engines.

	
_component_class

	the dataclass use to represent diesel engine

	
class business.manufacturers.readers.PipeCheckLoader(api_uri: str)

	Bases: business.manufacturers.readers.PipeLoader

	
class business.manufacturers.readers.PipeDesignLoader(api_uri: str)

	Bases: business.manufacturers.readers.PipeLoader

	
class business.manufacturers.readers.PipeLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

	
class business.manufacturers.readers.ProgressiveBodyCheckLoader(api_uri: str)

	Bases: business.manufacturers.readers.ProgressiveBodyLoader

	
class business.manufacturers.readers.ProgressiveBodyDesignLoader(api_uri: str)

	Bases: business.manufacturers.readers.ProgressiveBodyLoader

	
class business.manufacturers.readers.ProgressiveBodyLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

Adapter from a json source of progressive cavity pump bodies.

	
_component_class

	the dataclass use to represent progressive cavity pump body

	
class business.manufacturers.readers.RiserPipeCheckLoader(api_uri: str)

	Bases: business.manufacturers.readers.PipeLoader

	
class business.manufacturers.readers.RiserPipeDesignLoader(api_uri: str)

	Bases: business.manufacturers.readers.PipeLoader

	
class business.manufacturers.readers.ShaftCheckLoader(api_uri: str)

	Bases: business.manufacturers.readers.ShaftLoader

	
class business.manufacturers.readers.ShaftDesignLoader(api_uri: str)

	Bases: business.manufacturers.readers.ShaftLoader

	
class business.manufacturers.readers.ShaftLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

Adapter from a json source of progressive cavity pump shafts.

	
_component_class

	the dataclass use to represent progressive cavity pump shaft

	
class business.manufacturers.readers.SubmersibleCheckLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

	
class business.manufacturers.readers.SubmersibleDesignLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

	
business.manufacturers.readers.hydraulic_hardware_patch_attempt(api_uri)

	

business.manufacturers.services module

Collection of uri’s used to access the hydraulic hardware json data.

	
business.manufacturers.services.PERSISTENCE_HOST = '127.0.0.1:8000'

	Prescribes the root url of the persistent data.

	
business.manufacturers.services.get_persistence_host()

	Fake and temporary.

	
business.manufacturers.services.get_server_settings()

	

	
business.manufacturers.services.hydraulic_hardware_apis = {'bodies': 'http://127.0.0.1:8000/api/bodies/', 'bores': 'http://127.0.0.1:8000/api/bores/', 'carbon_pipes': 'http://127.0.0.1:8000/api/carbon_pipes/', 'combinations': 'http://127.0.0.1:8000/api/combinations/', 'driveheads': 'http://127.0.0.1:8000/api/driveheads/', 'engines': 'http://127.0.0.1:8000/api/engines/', 'materials': 'http://127.0.0.1:8000/api/materials/', 'pipes': 'http://127.0.0.1:8000/api/pipes/', 'plants': 'http://127.0.0.1:8000/api/plants/', 'polyethylene_pipes': 'http://127.0.0.1:8000/api/polyethylene_pipes/', 'riser_assemblies': 'http://127.0.0.1:8000/api/riser_assemblies/', 'shafts': 'http://127.0.0.1:8000/api/shafts/', 'steel_pipes': 'http://127.0.0.1:8000/api/steel_pipes/', 'submersibles': 'http://127.0.0.1:8000/api/submersibles/'}

	Prescribes the url of hydraulic hardware catalogs.

	
business.manufacturers.services.mocked_persistence_host(*args, **kwargs)

	

business.manufacturers.utils module

Define an ancestor class common to hydraulic hardware dataclasses.

	
class business.manufacturers.utils.MonostateMixin

	Bases: object

Add the monostate pattern to instances of dataclass.

	
property adopt

	Return a copy of the dataclass instance.

After this method is called, the newly created instace will trigger
its __post_init__ method to recreate the Rating instances.

Example

The following code:
`new_engine = engine.adopt()`
entails that <new_engine> will receive a copy of <rating_data>
with which will create its own instance of EngineRating.

business.manufacturers.catalogs package

This module gathers the available hydraulic hardware (such as pipes, pumps…)

Each kind of hydraulic hardware is store in a separate collection. The
hydraulic hardware taken in consideration is that typical of rural water
supply schemes.

Example

	BodyPool:
	store all commercially available pumps which were loaded into the
software

	CatalogOfEngines:
	store all commercially available diesel engines which were loaded
into the software

Modules

	bases:
	common base classes and mixinx

	progressives:
	store positive dispacement pumps run by a shaft through the borehole

	engines:
	store diesel engines

	pipes:
	store polyethilene and galvanised pipes

	submersibles:
	store electric submersible pumps

Submodules

business.manufacturers.catalogs.bases module

Provide common functionalities to the modules of ~business.manufacturers.catalogs.

	
class business.manufacturers.catalogs.bases.BaseCatalog(*args, **kwargs)

	Bases: business.commons.loggers.InitLogger

Class holding functionalities to read json data from a rest interface.

	
property as_dict

	

business.manufacturers.catalogs.engines module

Define the diesel engine installed in an ‘electricless’ station.

	
class business.manufacturers.catalogs.engines.EngineCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.engines.EnginePool

	
class business.manufacturers.catalogs.engines.EngineDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.engines.EnginePool

	
property pick_engine_by_min_diesel_consumption

	Return the engine with the best energy efficiency.

The best energy efficiency is evaluated as the lowest diesel consumption.

	Parameters

	
	power (Quantity("POWER"))) – the duty point (flow, energy) that the combination must be able to deliver

	power – the power output the engine must deliver

	Returns

	the engine with the lowest diesel consumption

	Return type

	manufacturers.components.Engine

	
property required_power

	

	
class business.manufacturers.catalogs.engines.EnginePool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.bases.BaseCatalog

A class used to represent the collection of commercially available diesel
engines.

	
_api_key_to_load

	the rest api uri to get the engine data

	Type

	str

	
_rest_api_reader

	the adapter in charge of reading and cleaning the engine data.

	Type

	adapter class

	
makes

	the engines mapped to a unique identifier

	Type

	dict

	
property mock_pick

	

business.manufacturers.catalogs.pipes module

Define the pipes installed in a water supply, either ‘gravity’ or ‘station’.

Notes

In rural water supply engineering, the materials of pipes are both plastic
(PVC and polyethilene) and metallic (galvanised steel). The following classes
are used when environmental conditions limit the choice of materials

Example

If a Trunk crosses areas where it is impossible to dig a trench, then the
computer software will be asked to adopt the class SteelPipePool.

	
class business.manufacturers.catalogs.pipes.BasePipePool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.ShortFeederSelectionMixin

A class used to represent a catalog of pipes.

The singleton catalog holding all the commercial pipes available
for the hydraulic design and check problem calculations.

	
working_condition

	the tuple (water flow, pressure rating) for which a pipe must be chosen

	
get_suitable_rated_working_pressure()

	Return the smallest rated working pressure above a given value

	
get_suitable_rated_working_pressure_index()

	Return the index of smallest rated working pressure
above a given value

	
lowest_available_rated_working_pressure()

	Return the lowest (and hence ‘less expensive’) rated working pressure

	
sorted_rated_working_pressures()

	Return a doubly linked list of ascending rated working pressures

	
get_suitable_pipes_list()

	Return pipes with correct flow speed, sorted from optimal speed

	
filter_those_having_suitable_speed()

	Filter the commercial pipes having suitable flow speed and sort them

	
property as_dict

	

	
static filter_those_having_suitable_speed(pipe: Union[business.manufacturers.components.pipes.PipeCheck, business.manufacturers.components.pipes.PipeDesign]) → bool

	Filter the commercial pipes having suitable flow speed and sort them.

This method reads working_conditions and filters accordingly those
commercial pipes which have both a suitable flow speed.
Then, it returns the pipes sorted by the closest to the optimal value
of flow speed.

	Raises

	AllCommercialPipesAreUnsuitableSpeedwise – If no commercial pipe may carry the flow set in working_conditions
 with a flow speed within the engineering advisable range.
 Exaggerate speeds result in wear and conversely slow speeds result
 in sedimentation and clogging.

	
property get_suitable_pipes_list

	Return pipes with correct flow speed, sorted from optimal speed.

Sorting by optimal speed means that the pipes are ordered first those
whose water flow speed is closest, either by excess or defect, to the
optimla water flow speed.

This method reads working_conditions and filters accordingly those
commercial pipes which have both a suitable flow speed and a suitable
rated working pressure.
Then, it returns the pipes sorted by the closest to the optimal value
of flow speed.

	Returns

	the sequence of pipes TODO

	Return type

	Tuple[Pipe]

	Raises

	AllCommercialPipesAreUnsuitableSpeedwise – If no commercial pipe may carry the flow set in working_conditions
 with a flow speed within the engineering advisable range.
 Exaggerate speeds result in wear and conversely slow speeds result
 in sedimentation and clogging.

	
get_suitable_rated_working_pressure(working_pressure: pint.quantity.build_quantity_class.<locals>.Quantity) → pint.quantity.build_quantity_class.<locals>.Quantity

	Return the smallest rated working pressure above a given value.

	Parameters

	working_pressure (Quantity("TODO pressure")) – the pressure that a commercial pipe must be able to sustain

	Returns

	The smallest coommercial rated working pressure above working_pressure

	Return type

	manufacturers.components.Pipe

	Raises

	NoSuitableRatedWorkingPressureAvailableFromCatalog – If the catalog does not have any commercia pipes able to sustain
 the pressure request

	
get_suitable_rated_working_pressure_index(working_pressure: pint.quantity.build_quantity_class.<locals>.Quantity) → int

	Return the index of smallest rated working pressure
above a given value.

	Parameters

	working_pressure (Quantity("TODO pressure")) – the pressure that a commercial pipe must be able to sustain

	Returns

	The index of the smallest coommercial rated working pressure
above working_pressure

	Return type

	manufacturers.components.Pipe

	Raises

	NoSuitableRatedWorkingPressureAvailableFromCatalog – If the catalog does not have any commercia pipes able to sustain
 the pressure request

	
property lowest_available_rated_working_pressure

	Return the lowest (and hence ‘less expensive’) rated working pressure
among the commercial pipes stored in the catalog.

	
property pick_random_pipe

	Returns a random pipe.

This method is useful to mock a feeder during a software test session.

	
property sorted_rated_working_pressures

	Return a doubly linked list of ascending rated working pressures.

	
property working_condition

	

	
class business.manufacturers.catalogs.pipes.PipeCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.PipePool

	
class business.manufacturers.catalogs.pipes.PipeDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.PipePool

	
class business.manufacturers.catalogs.pipes.PipePool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.BasePipePool

A class used to represent the collection of all commercial pipes.

	
api_keys_to_load

	the urls to query the rest interface.
A string in the set queries for metallic pipes. The others
query for the plastic ones (polyethilene).

	Type

	Set(str)

	
api_keys_to_load = {'polyethylene_pipes', 'steel_pipes'}

	

	
class business.manufacturers.catalogs.pipes.RiserPipeCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.RiserPipePool

	
class business.manufacturers.catalogs.pipes.RiserPipeDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.RiserPipePool

	
property water_flow

	

	
class business.manufacturers.catalogs.pipes.RiserPipePool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.BasePipePool

A class used to represent the collection of commercial pipes
which may be used inside the borehole casing.

	
api_keys_to_load

	The string in the set queries for sturdy metallic pipes.

	Type

	Set(str)

	
api_keys_to_load = {'steel_pipes'}

	

	
property get_suitable_pipes_list

	Return the list of pipes compliant with working_conditions
ordered from closest to optimal flow speed.

	
class business.manufacturers.catalogs.pipes.ShortFeederSelectionMixin

	Bases: object

Collection of methods only used to pick a pipe in short feeders.

Short feeders are those where pressure rating effects do not occour.
Further, short feeders imply limited headloss compared to a borehole,
hence no simplex solver is necessary when approaching the design problem.

Example

A ‘short’ feeder is one where the pressure limits do not represent an
hydraulic design hurdle. The lowest rated pressure class may be selected.
This mixin may be used for this simple pressure-agnostic design procedure.

	
property pick_one_pipe_by_optimal_flow_speed

	Return the pipe whose flow speed is closest to an optimum value.

	
yield_all_pipes_by_optimal_flow_speed() → Iterator[business.manufacturers.components.pipes.PipeDesign]

	Yield pipes best to worst according to suitable flow speed.

	
class business.manufacturers.catalogs.pipes.SteelPipePool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.pipes.BasePipePool

A class used to represent the collection of commercial pipes
which may laid exposed without being buried in a trench.

	
api_keys_to_load

	the urls to query the rest interface.
The string in the set queries for metallic pipes.

	Type

	Set(str)

	
api_keys_to_load = {'steel_pipes'}

	

business.manufacturers.catalogs.progressives module

Define the progressive cavity pump installed in an ‘electricless’ station.

Refer to progressives_nomenclature

	
class business.manufacturers.catalogs.progressives.BaseColumnLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

Adapter from a json source of progressive cavity pump riser assembly.

	
_component_class

	the dataclass use to represent progressive cavity pump riser assemblies

	
class business.manufacturers.catalogs.progressives.BaseCombinationLoader(api_uri: str)

	Bases: business.manufacturers.readers.BaseComponentLoader

	
class business.manufacturers.catalogs.progressives.BodyCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.BodyPool

	
class business.manufacturers.catalogs.progressives.BodyDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.BodyPool

	
class business.manufacturers.catalogs.progressives.BodyPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.bases.BaseCatalog

A class used to represent the collection of commercially available pumps.

every instance in the collections is an instance of components.progressives.Body.
PIERGIORGIO2: è giusto scrivere come nella riga sopra in un docstring? Basta questa dot notation per fare capire dove si trova Body?

	
_api_key_to_load

	the rest api uri to get the pump data

	Type

	str

	
_rest_api_reader

	the adapter in charge of reading and cleaning the pump data.

	Type

	adapter class

	
makes

	the pump bodies mapped to a unique identifier

	Type

	dict

	
class business.manufacturers.catalogs.progressives.ColumnCheckLoader(api_uri: str)

	Bases: business.manufacturers.catalogs.progressives.BaseColumnLoader

	
class business.manufacturers.catalogs.progressives.ColumnCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.ColumnPool

	
class business.manufacturers.catalogs.progressives.ColumnDesignLoader(api_uri: str)

	Bases: business.manufacturers.catalogs.progressives.BaseColumnLoader

	
class business.manufacturers.catalogs.progressives.ColumnDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.ColumnPool

	
class business.manufacturers.catalogs.progressives.ColumnPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.bases.BaseCatalog

A class used to represent the collection of feasible combinations that
make up for a ‘riser assembly’.

	
_api_key_to_load

	the rest api uri to get the riser assembly data

	Type

	str

	
_rest_api_reader

	the adapter in charge of reading and cleaning the riser assembly data.

	Type

	adapter class

	
makes

	the riser assemblies mapped to a unique identifier

	Type

	dict

	
class business.manufacturers.catalogs.progressives.CombinationCheckLoader(api_uri: str)

	Bases: business.manufacturers.catalogs.progressives.BaseCombinationLoader

	
class business.manufacturers.catalogs.progressives.CombinationCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.CombinationPool

	
class business.manufacturers.catalogs.progressives.CombinationDesignLoader(api_uri: str)

	Bases: business.manufacturers.catalogs.progressives.BaseCombinationLoader

	
class business.manufacturers.catalogs.progressives.CombinationDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.CombinationPool

	
property duty_before_column_friction

	

	
property pick_least_power_combination

	Return the pump combination with the best energy efficiency.

Important

Why we have ‘duty_excluding_column_friction’:
The consumer of this method knows the energy required by resistive
system (aquifer, feeder) but, so far, does not know which pump model
will be selected by the algorithm. When this method is invoked, the
algorith selects a pump and its shaft, therefore perturbing the
original ‘targeted duty’. The new duty, following to the pump selction
is identified by <targeted_duty_including_riser_friction>.

	Parameters

	
	duty_excluding_column_friction (business_definitions.FlowVsEnergyPoint,) – the duty point (flow, energy) that the combination must be able to deliver

	pump_depth (Quantity("length"))) – the depth at which the pump must be installed
(it affects the efficiency through the shaft losses)

	Returns

	the pump combination with the best energy efficiency

	Return type

	manufacturers.components.Combination

	
property pump_depth

	

	
class business.manufacturers.catalogs.progressives.CombinationPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.PlotCombinationsMixin, business.manufacturers.catalogs.bases.BaseCatalog

A class used to represent the collection of feasible combinations that
make up for a ‘pump’.

	
_api_key_to_load

	the rest api uri to get the riser assembly data

	Type

	str

	
_rest_api_reader

	the adapter in charge of reading and cleaning the riser assembly data.

	Type

	adapter class

	
pick_least_power_combination(

	duty_excluding_column_friction : business_definitions.FlowVsEnergyPoint,
pump_depth : Quantity(“length”))
return the pump combination with the best energy efficiency

	
property mock_pick

	

	
class business.manufacturers.catalogs.progressives.DriveheadPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.bases.BaseCatalog

A class used to represent the collection of commercially available driveheads.

	
_api_key_to_load

	the rest api uri to get the drivehead data

	Type

	str

	
_rest_api_reader

	the adapter in charge of reading and cleaning the drivehead data.

	Type

	adapter class

	
makes

	the driveheads mapped to a unique identifier

	Type

	dict

	
class business.manufacturers.catalogs.progressives.PlotCombinationsMixin

	Bases: object

A mixin class gathering methods used to send data to matplotlib package.

The methods here defined allow to iterate in the catalog.

Example

>>> catalog_of_combinations = CombinationCheckPool()
>>> for combination in catalog_of_combinations:
>>> # do something with <combination>

	
class business.manufacturers.catalogs.progressives.ShaftCheckPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.ShaftPool

	
class business.manufacturers.catalogs.progressives.ShaftDesignPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.progressives.ShaftPool

	
class business.manufacturers.catalogs.progressives.ShaftPool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.bases.BaseCatalog

Represent the collection of commercially available shafts.

	
_api_key_to_load

	the rest api uri to get the shaft data

	Type

	str

	
_rest_api_reader

	the adapter in charge of reading and cleaning the shaft data.

	Type

	adapter class

	
makes

	the shafts mapped to a unique identifier

	Type

	dict

business.manufacturers.catalogs.submersibles module

Define the electric submersible pump installed in an ‘electric’ station.

	
class business.manufacturers.catalogs.submersibles.SubmersiblePool(*args, **kwargs)

	Bases: business.manufacturers.catalogs.bases.BaseCatalog

A class used to represent the collection of commercially available
submersible pumps.

	
_api_key_to_load

	the rest api uri to get the pump data

	Type

	str

	
list_suitable_pumps

	Return the list of pumps compliant with working_conditions

	
working_condition

	Get or set the current working conditions that pumps must sustain

	
property mock_pick

	

	
property working_condition

	

	
class business.manufacturers.catalogs.submersibles.SubmersiblePoolCheck(*args, **kwargs)

	Bases: business.manufacturers.catalogs.submersibles.SubmersiblePool

	
class business.manufacturers.catalogs.submersibles.SubmersiblePoolDesign(*args, **kwargs)

	Bases: business.manufacturers.catalogs.submersibles.SubmersiblePool

	
property get_suitable_pump_list

	Return the list of pumps compliant with working_conditions.

	
property water_flow

	

business.manufacturers.components package

Collection of the models of hydraulic hardware (such as pipes, pumps…)

The hydraulic hardware taken in consideration is that typical of rural water
supply schemes.

Modules

	progressives:
	models positive dispacement pumps run by a shaft through the borehole

	engines:
	models diesel engines

	pipes:
	models polyethilene and galvanised pipes

	submersibles:
	models electric submersible pumps

Submodules

business.manufacturers.components.engines module

Define the internal combustion engine installed in an ‘electricless’ station.

	
class business.manufacturers.components.engines.Clutch(_pulley_diameter: int)

	Bases: business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class to represent a centrifugal clutch keyed to the engine crankshaft.

	
rpm

	return the currrent rotation speed of the clutch pulley

	Type

	Quantity(“revolutions_per_minute”)

	
absorbed_power

	return the mechanical power absorbed by the clutch at the currrent
rotation speed

	Type

	Quantity(“power”)

	
property absorbed_power

	Return the mechanical power absorbed by the clutch.

	Returns

	At present it returns a mock zero value.

	Return type

	Quantity(“power”)

	
class business.manufacturers.components.engines.Engine(_natural_key_as_string: str, _standard_clutch_pulley_diameter: float, _rating_data: List[Dict])

	Bases: business.manufacturers.components.engines.EngineRatingMixin, business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class to represent an internal combution engine.

	Parameters

	
	name (string) – the make of the engine.

	_guessed_unit_price (decimal) – the shelf price of the engine.

	
class business.manufacturers.components.engines.EngineCheck(_natural_key_as_string: str, _standard_clutch_pulley_diameter: float, _rating_data: List[Dict])

	Bases: business.manufacturers.components.engines.Engine

Functionality: expose the methods needed in the resolution of the
‘hydarulic check problem’

	
property hourly_diesel_consumption

	Return the diesel consumption per hour at the current woring conditions.

	
property load

	Load is evaluated once the rpm is set.

	
property rpm_range

	Return a sequence of equidistant operating speeds of the crankshaft.

	Returns

	an array of dimensional values (Quantity(“revolutions_per_minute”))
with np.int16 magnitudes

	Return type

	np.array

	
property working_conditions

	

	
class business.manufacturers.components.engines.EngineDesign(_natural_key_as_string: str, _standard_clutch_pulley_diameter: float, _rating_data: List[Dict])

	Bases: business.manufacturers.components.engines.Engine

Model of a internal combustion engine during the hydraulic check problem.

Functionality: expose the methods needed in the resolution of the
‘hydarulic design problem’

In an hydraulic check problem, the goal is to find the engine that best
suits the required mechanical power demanded by the pump.
The pump has been identified in a previous step of the
hydraulic check problem.

The state of the engine is defined by the required power.

The outcome is DEVO RESITUIRE SPEED O COSA? CREDO BASTO LA SPEED

	
property get_optimal_duty

	Find the optimal revving speed to output the required power.

Performs linear interpolation between sample points.

Note

The optimal speed corresponds to minimal diesel consumption.
Each speed implies a load and a diesel consumption; this method
therefore evaluates the consumption along the power band and
identifies its minimum.

	
property required_power

	

	
property required_power_is_suitable

	

	
class business.manufacturers.components.engines.EngineRatingMixin

	Bases: object

A class to represent the engine rating and associated calculations.

Functionality: infer the engine behaviour based from
the plate data provided by the engine manufacturer.

	
rpm_range

	Return a sequence of equidistant operating speeds of the crankshaft

	
dispatch_np_type

	stores the numerical types to be used with power output,
diesel consumption and crankshaft rpm

	
dispatch_units

	stores the dimensional units to be used with power output,
diesel consumption and crankshaft rpm

	
required_power_is_suitable(power: Quantity(‘power’))

	boolean test whether the required power lies within advisable load limits

	
get_optimal_duty(power: Quantity(‘power’))

	Find the optimal revving speed to output the required power

	
Point

	alias of EngineRatingPoint

	
dispatch_np_type = {'delivered_power': <class 'numpy.float64'>, 'rpm': <class 'numpy.int16'>, 'specific_diesel_consumption': <class 'numpy.float64'>}

	

	
dispatch_units = {'delivered_power': <Unit('kilowatt')>, 'rpm': <Unit('revolutions_per_minute')>, 'specific_diesel_consumption': <Unit('gram / kilowatt_hour')>}

	

business.manufacturers.components.mixins module

business.manufacturers.components.pipes module

Define the commercial pipes.

	
business.manufacturers.components.pipes.FUTURE_round_the_water_flow(function: Callable) → Callable

	

	
class business.manufacturers.components.pipes.Pipe(_natural_key_as_string: str, _material_name: str, _pressure_limit: int, _internal_diameter: float, _standard_unit_length: int, _external_diameter: float)

	Bases: business.manufacturers.utils.MonostateMixin

A class to represent a commercial pipe.

Pipes vary in length from 3-6 m and longer by special order. Polyethylene
coils are an exception. They come in lengths of 30 and 150 m with longer
lengths available.

	
water_flow(Quantity("volume/time"))

	Get or set the water flowing inside the pipe

	
flow_speed

	return the velocity of the water flow inside the pipe

	
friction_per_unit_pathlength

	Return the hydraulic energy loss per unit of length of the pipe

	
property friction_per_unit_pathlength

	Return the hydraulic energy loss per unit of length of the pipe.

The calculation is evaluated at the current water flow.
This method dispatches the actual calculation to three different
methods, depending on the pipe material (polyethylene pipes, PVC pipes
and steel pipes). These are the three materials adopted in rural
water supply systems.

	Returns

	the hydraulic energy loss per unit of pipe length. It is
adimensional since hydraulic energy has the dimensions of a length.

	Return type

	Quantity(“dimensionless”)

	
get_headloss_per_meter_at_sample_flow(sample_water_flow: pint.quantity.build_quantity_class.<locals>.Quantity) → pint.quantity.build_quantity_class.<locals>.Quantity

	Return the hydraulic energy loss along 1 meter at a given water flow.

Functionality: allows to skip the water_flow setter, which is
computationally heavier.

Notes

Pipes dataclasses are implemented with state and the state is the
water_flow (such attribute has a setter and a getter). This function
is used to evaluate the ‘hydraulic energy loss’ (due to water friction)
due to a generic water flow, not the one set in the dataclass state.

	
property non_fractional_friction_per_unit_pathlength

	

	
class business.manufacturers.components.pipes.PipeCheck(_natural_key_as_string: str, _material_name: str, _pressure_limit: int, _internal_diameter: float, _standard_unit_length: int, _external_diameter: float)

	Bases: business.manufacturers.components.pipes.Pipe

	
class business.manufacturers.components.pipes.PipeDesign(_natural_key_as_string: str, _material_name: str, _pressure_limit: int, _internal_diameter: float, _standard_unit_length: int, _external_diameter: float)

	Bases: business.manufacturers.components.pipes.Pipe

	
property flow_speed

	

	
property water_flow

	

	
class business.manufacturers.components.pipes.RiserPipe(_natural_key_as_string: str, _material_name: str, _pressure_limit: int, _internal_diameter: float, _standard_unit_length: int, _external_diameter: float)

	Bases: business.manufacturers.components.pipes.Pipe

	
class business.manufacturers.components.pipes.RiserPipeCheck(_natural_key_as_string: str, _material_name: str, _pressure_limit: int, _internal_diameter: float, _standard_unit_length: int, _external_diameter: float)

	Bases: business.manufacturers.components.pipes.RiserPipe, business.manufacturers.components.pipes.PipeCheck

	
class business.manufacturers.components.pipes.RiserPipeDesign(_natural_key_as_string: str, _material_name: str, _pressure_limit: int, _internal_diameter: float, _standard_unit_length: int, _external_diameter: float)

	Bases: business.manufacturers.components.pipes.RiserPipe, business.manufacturers.components.pipes.PipeDesign

	
business.manufacturers.components.pipes.round_the_water_flow(function: Callable) → Callable

	

business.manufacturers.components.progressives module

Define the ‘electricless progressive cavity pump’ installed in a borehole.

	Nomenclature:
	
	
	Body:
	the pumping element installed in the borehole

	
	Drivehead:
	the gear element at the top of the borehole

	
	Shaft:
	the shaft transmitting movement to the Body

	
	Column:
	the combination of borehole pipe and the shaft inside it

	
	Combination:
	the composite of Body, Column and Drivehead

Notes

The wording “deep progressive cavity” means that the pump is a
‘composition’ of three mechanical elements:

	a pump body: installed down the borehole

	a riser assembly, rising in the borehole (made of water pipe and shaft inside it)

	a drivehead, installed at the wellhead

Each of these mechanical elements has a separate collection.

	
class business.manufacturers.components.progressives.Body(_natural_key_as_string: str, _flow_rating_data: List, _power_rating_data: List)

	Bases: business.manufacturers.components.progressives.BodyHydraulicRatingMixin, business.manufacturers.components.progressives.BodyMechanicalRatingMixin, business.manufacturers.components.progressives.PlotsMixin, business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class used to represent the pump body.

	
rpm()

	get and set the pump rotational speed

	
resistive_curve()

	return the pump characteristic curve HAESTADT water flow versus hydraulic energy

	
class business.manufacturers.components.progressives.BodyCheck(_natural_key_as_string: str, _flow_rating_data: List, _power_rating_data: List)

	Bases: business.manufacturers.components.progressives.Body

write

	
property absorbed_mechanical_power

	Same logic holds as that in water_flow.

	
property resistive_curve

	

	
property rpm

	

	
property water_flow

	Water flow is read only since you cannot impose a flow to a pump.
You may only impose a rotational speed, if the engine is powerful
enough. The water flow will physically update accordingly to the new
rotational speed.

	
class business.manufacturers.components.progressives.BodyDesign(_natural_key_as_string: str, _flow_rating_data: List, _power_rating_data: List)

	Bases: business.manufacturers.components.progressives.Body

CREDO QUESTA CLASSE FUNZIONI COSI’:
1 - RICEVE UN DUTY BEFORE COLUMN E CALCOLA LA RPM
2 - RICEVE UN DUTY AFTER COLUMN E IL MUTATOR CAMBIA LA RPM E ALLORA INNESCO GET_DUTY_POWER
IN TTOTAL HA SOLO 3 METODI

	
property absorbed_mechanical_power

	

	
property coverage

	HAESTADT

	
property duty_after_column_friction

	

	
property get_duty_rpm

	Return the rpm at which the pump delivers the requested water flow and energy.

Performs linear interpolation between sample points.

	Parameters

	flow_vs_energy_point – the (water flow, hydraulic energy) tuple the pump is required to deliver

	
property rpm

	

	
class business.manufacturers.components.progressives.BodyHydraulicRatingMixin

	Bases: object

A mixin collecting methods to analyse data of the pump rated water flow.

	
RatedPoint

	a 3-d point in water flow, hydraulic energy, rpm coordinates

	
dispatch_np_type

	stores the numerical types to be used with water flow, hydraulic energy, rpm

	
dispatch_units

	stores the dimensional units to be used with water flow, hydraulic energy, rpm

	
coverage_as_matplotlib()

	matplotlib coordinates of the pump coverage HAESTADT

	
coverage()

	HAESTADT

	
get_duty_rpm()

	return the rpm for which the pump attains a given (water flow, energy) duty

	
RatedPoint

	alias of PumpFlowRatingPoint

	
dispatch_np_type = {'hydraulic_energy': <class 'numpy.int16'>, 'rpm': <class 'numpy.int16'>, 'water_flow': <class 'numpy.float64'>}

	

	
dispatch_units = {'hydraulic_energy': <Unit('meter')>, 'rpm': <Unit('revolutions_per_minute')>, 'water_flow': <Unit('liter / second')>}

	

	
class business.manufacturers.components.progressives.BodyMechanicalRatingMixin

	Bases: object

A mixin collecting methods to analyse data of the pump rated mechanical power.

	
RatedPoint

	a 3-d point in mechanical power, hydraulic energy, rpm coordinates

	
_get_absorbed_mechanical_power(duty_rpm, duty_head)

	return the mechanical power required by the pump at given rpm and energy

	
Point__doc__ = '\n Represent a point in the 2-d plane whose coordinates are mechanical power, hydraulic energy and rpm.\n '

	

	
RatedPoint

	alias of PumpPowerRatingPoint

	
class business.manufacturers.components.progressives.Column(_column_unit_length: int, _natural_key_as_string: str, _max_allowed_pump_depth: int, _rating_data: str)

	Bases: business.manufacturers.components.progressives.ColumnRatingMixin, business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class used to represent the composite of the borehole pipe
and the shaft rotating inside it.

	
get_duty_point()

	return the hydraulic energy burned off by the pipe&shaft assembly

	
working_conditions()

	set the requested duty point
represented by a 2-tuple (water flow, pump depth)

	
property adopt

	Return a copy of the dataclass instance.

Overrides the monostate becasue of the ‘foreign-key’ relations
with the shaft and the pipe.

	
property get_duty_point

	Return the hydraulic energy loss through the riser at the current
water flow.

	Returns

	2-tuple (energy, water flow) with dimensional values
(Quantity(“length”), Quantity(“volume / time”))

	Return type

	FlowVsEnergyPoint

	
property working_conditions

	

	
class business.manufacturers.components.progressives.ColumnCheck(_column_unit_length: int, _natural_key_as_string: str, _max_allowed_pump_depth: int, _rating_data: str, _shaft: business.manufacturers.components.progressives.ShaftCheck, _pipe: business.manufacturers.components.pipes.PipeCheck)

	Bases: business.manufacturers.components.progressives.Column

	
property pump_depth

	

	
property rpm

	

	
class business.manufacturers.components.progressives.ColumnDesign(_column_unit_length: int, _natural_key_as_string: str, _max_allowed_pump_depth: int, _rating_data: str, _shaft: business.manufacturers.components.progressives.ShaftDesign, _pipe: business.manufacturers.components.pipes.PipeDesign)

	Bases: business.manufacturers.components.progressives.Column

	
class business.manufacturers.components.progressives.ColumnRatingMixin

	Bases: object

A mixin collecting methods to evaluate the hydraulic friction.

	
_get_friction_per_unit_pathlength()

	Return the hydraulic friction in the assembly per meter

	
RatedPoint

	alias of RiserFrictionPoint

	
class business.manufacturers.components.progressives.Combination(_natural_key_as_string: str)

	Bases: business.manufacturers.utils.MonostateMixin

A class used to represent the composite of body, drivehead and riser assembly.

	
hydraulic_design_constraint(targeted_duty_excluding_riser, pump_depth)

	sets the targeted design constraints in the Column instance
associated to the Combination instance.

	
property absorbed_mechanical_power

	

	
class business.manufacturers.components.progressives.CombinationCheck(_natural_key_as_string: str, _body: business.manufacturers.components.progressives.BodyCheck, _drivehead: business.manufacturers.components.progressives.DriveheadCheck, _column: business.manufacturers.components.progressives.ColumnCheck)

	Bases: business.manufacturers.components.progressives.Combination

	
property adopt

	Return a copy of the dataclass instance.

Overrides the monostate becasue of the ‘foreign-key’ relations
with the drivehead, the body and the column.

	
property pump_depth

	

	
property rpm

	

	
class business.manufacturers.components.progressives.CombinationDesign(_natural_key_as_string: str, _body: business.manufacturers.components.progressives.BodyDesign, _column: business.manufacturers.components.progressives.ColumnDesign, _drivehead: business.manufacturers.components.progressives.DriveheadDesign)

	Bases: business.manufacturers.components.progressives.Combination

	
property rpm

	

	
class business.manufacturers.components.progressives.Drivehead(_natural_key_as_string: str, _max_transmittable_power: float, _absorbed_power_per_rpm: float)

	Bases: business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class used to represent a drivehead.

The drivehead is the mechanical element that connects the top of the
pump shaft with the prime mover.
This connection here is done via belts.

	
absorbed_power()

	return the mechanical absorbed mechanical power

	
property absorbed_mechanical_power

	Return the drivehead’s mechanical absorbed mechanical power at the current rpm speed.

	Returns

	mechanical mechanical power

	Return type

	Quantity(“mechanical power”)

	
class business.manufacturers.components.progressives.DriveheadCheck(_natural_key_as_string: str, _max_transmittable_power: float, _absorbed_power_per_rpm: float)

	Bases: business.manufacturers.components.progressives.Drivehead

	
class business.manufacturers.components.progressives.DriveheadDesign(_natural_key_as_string: str, _max_transmittable_power: float, _absorbed_power_per_rpm: float)

	Bases: business.manufacturers.components.progressives.Drivehead

	
class business.manufacturers.components.progressives.PlotsMixin

	Bases: object

A mixin collecting methods to adapt data to matplotlib interface.

	
coverage_as_matplotlib()

	matplotlib coordinates of the pump coverage HAESTADT

	
property coverage_as_matplotlib

	Return the coverage adimensional coordinates, as a 2-tuple of lists.

Selecting the pump can be an intimidating process n, given the number
of pump modls available. This method returns a ‘pump coverage chart’
for choosing the pump model: it provides the boundary of working
conditions on a hydraulic energy vs water flow 2-D chart.

shapely’s method boundary returns a LineString and then xy method
extracts the coordinates as a 2-tuple of tuples of floats.
These coordinates comply with matplotlib’s plot interface.

	
class business.manufacturers.components.progressives.Shaft(_natural_key_as_string: str, _absorbed_power_per_rpm_and_length: float, _standard_unit_length: int)

	Bases: business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class used to represent a shaft inserted inside the borehole pipe.

	
absorbed_power()

	return the mechanical absorbed mechanical power

	
property absorbed_mechanical_power

	Return the shaft’s mechanical absorbed mechanical power at the current rpm speed.

	
absorbed_power()

	return the mechanical absorbed mechanical power

	
class business.manufacturers.components.progressives.ShaftCheck(_natural_key_as_string: str, _absorbed_power_per_rpm_and_length: float, _standard_unit_length: int)

	Bases: business.manufacturers.components.progressives.Shaft

	
class business.manufacturers.components.progressives.ShaftDesign(_natural_key_as_string: str, _absorbed_power_per_rpm_and_length: float, _standard_unit_length: int)

	Bases: business.manufacturers.components.progressives.Shaft

business.manufacturers.components.submersibles module

Define the ‘electric submersible pump’ installed in a borehole.

	
class business.manufacturers.components.submersibles.SubmersiblePump(_natural_key_as_string: str, _rating_data: List[Dict])

	Bases: business.commons.loggers.InitLoggerMixin, business.manufacturers.utils.MonostateMixin

A class to represent an electric submersible pump, togetehr with
its electric motor.

Energy needs to be added to a hydraulic system to overcome elevation differences and friction losses. A pump is a device to which mechanical energy is applied and transferred to the water as total head.
The relationship between pump head and pump discharge is given in the form of a head versus discharge curve.

	
water_flow

	Get or set the water flow through the pump

	
is_suitable_for_given_flow

	boolean test checking whether the pump may be deliver the water_flow

	
_min_rated_flow

	Return the smallest water flow found in the discrete rating points

	
_max_rated_flow

	Return the largest water flow found in the discrete rating points

	
get_duty_at_current_water_flow

	Return the pump performance (delivered flow, power requirements)
interpolated at the water_flow set

	
get_characteristic_curve

	Return the curve (delivered flow vs required mechanical energy) of the
pump

	
RatingPoint

	a 3-d point in flow, head, rpm coordinates

	
dispatch_np_type

	stores the numerical types to be used with flow, head,
brake and input power

	
dispatch_units

	stores the numerical types to be used with flow, head,
brake and input power

	
RatingPoint

	alias of SubmersiblePumpRatingPoint

	
dispatch_np_type = {'electric_power': <class 'numpy.float64'>, 'hydraulic_energy': <class 'numpy.int16'>, 'mechanical_power': <class 'numpy.float64'>, 'water_flow': <class 'numpy.float64'>}

	

	
dispatch_units = {'electric_power': <Unit('kilowatt')>, 'hydraulic_energy': <Unit('meter')>, 'mechanical_power': <Unit('kilowatt')>, 'water_flow': <Unit('liter / second')>}

	

	
property get_characteristic_curve

	Return the (flow, water energy) curve characteristic of the pump.

	Returns

	the typed sequence whose elements are the points of the curve

	Return type

	FlowVsEnergyCurve

	
property get_duty_at_current_water_flow

	Return the rating data inferred from linear interpolation over
the delivered water_flow.

Performs linear interpolation between sample points.

	
property water_flow

	

	
class business.manufacturers.components.submersibles.SubmersiblePumpCheck(_natural_key_as_string: str, _rating_data: List[Dict])

	Bases: business.manufacturers.components.submersibles.SubmersiblePump

	
class business.manufacturers.components.submersibles.SubmersiblePumpDesign(_natural_key_as_string: str, _rating_data: List[Dict])

	Bases: business.manufacturers.components.submersibles.SubmersiblePump

	
get_duty()

	

	
property get_electric_power

	

	
property get_hydraulic_energy

	

	
property is_suitable_for_given_flow

	Return True if the pump may be deliver the water_flow.
False otherwise.

	
property water_flow

	

business.manufacturers.exceptions package

Submodules

business.manufacturers.exceptions.base module

Collection of the exceptions common to different typologies of products.

Example

Pumps may belong to different typologies (submersible, progressive) but,
not withstanding their typology, there is a common exception “All pumps
are unsuitable”

	
exception business.manufacturers.exceptions.base.AllElectricSourcesAreUnsuitable

	Bases: business.commons.exceptions.RuralwaterException

The catalog of electric sources has no device capable of
supplying the required electric power.

May be raised by any catalog of electric generators, or by a catalog
of photovoltaic solar panels.

	
exception business.manufacturers.exceptions.base.AllPumpsAreUnsuitable

	Bases: business.commons.exceptions.RuralwaterException

The catalog of pumps has no pump capable of
supplying the required duty.

May be raised by any catalog of pumps, for example a catalog of
submersibles or a catalog of positive displacement pumps.

business.manufacturers.exceptions.engines module

Collection of the exceptions raised inside
manufacturers.components.engines package.

	
exception business.manufacturers.exceptions.engines.AllEnginesAreUnsuitable

	Bases: business.commons.exceptions.RuralwaterException

The catalog of progressive displacement pumps has no pump capable of
supplying the required duty.

This means, colloquially, that either all the pumps are ‘too big’
or they are ‘too small’.

	
exception business.manufacturers.exceptions.engines.EngineOverRevving

	Bases: business.commons.exceptions.UnadvisableDuty

The Engine speed lies above the maximum advisable limit.

	
exception business.manufacturers.exceptions.engines.EngineOverload

	Bases: business.commons.exceptions.UnadvisableDuty

The Engine load exceeds the maximum advisable limit specified by the
manufacturer.

	
exception business.manufacturers.exceptions.engines.EngineUnderRevving

	Bases: business.commons.exceptions.UnadvisableDuty

The Engine speed lies below the minimum advisable limit.

This condition is deemed unadvisable because it can lead to
bad combustion and carbonation of the cylinders.

business.manufacturers.exceptions.pipes module

Collection of the exceptions raised inside
manufacturers.components.pipes package.

	
exception business.manufacturers.exceptions.pipes.AllCommercialPipesAreUnsuitableBorewise(message, borehole_casing_bore)

	Bases: business.commons.exceptions.RuralwaterException

No pipe has suitable bore to fit inside the borehole casing.

	
exception business.manufacturers.exceptions.pipes.AllCommercialPipesAreUnsuitableSpeedwise(message, desired_flow, required_rating)

	Bases: business.commons.exceptions.RuralwaterException

No pipe is suitable to carry the desired _water_flow within the advisable
_water_flow speed limits.

Raised by manufacturers.CommercialHdpePipes and
manufacturers.CommercialGalvanisedSteelPipes.

	
exception business.manufacturers.exceptions.pipes.NoSuitableRatedWorkingPressureAvailableFromCatalog

	Bases: business.commons.exceptions.RuralwaterException

The catalog of pipes has no pipe belonging to the required rated
working pressure.

This means that the pipes are too ‘thin’ or ‘weak’ to sustain the
hydraulic pressure required during the solution of the hydraulic design
algorithm.

business.manufacturers.exceptions.progressives module

Collection of the exceptions raised inside
manufacturers.components.progressives package.

	
exception business.manufacturers.exceptions.progressives.AllPumpCombinationsAreUnsuitable

	Bases: business.manufacturers.exceptions.base.AllPumpsAreUnsuitable

The catalog of progressive progressives pumps has no pump capable of
supplying the required duty.

This means, colloquially, that either all the pumps are ‘too big’
or they are ‘too small’.

	
exception business.manufacturers.exceptions.progressives.NonExistentDutyPoint

	Bases: business.commons.exceptions.RuralwaterException

Base class for all cases where the duty point does not exist.

	
exception business.manufacturers.exceptions.progressives.PumpOverRevving

	Bases: business.commons.exceptions.RuralwaterException

The Body shaft speed lies above the maximum advisable limit
specified by the manufacturer.

business.manufacturers.exceptions.submersibles module

Collection of the exceptions raised inside
manufacturers.components.submersibles package.

	
exception business.manufacturers.exceptions.submersibles.AllSubmersiblePumpsAreUnsuitable

	Bases: business.manufacturers.exceptions.base.AllPumpsAreUnsuitable

The catalog of submesible pumps has no pump capable of
supplying the required duty.

business.station package

Design and check projects of water supplies fed from a borehole.

Classes

	
	ElectricCheck:
	models the ‘hydraulic check problem’ for an ‘electric station’ water supply.

	
	ElectriclessCheck:
	models the ‘hydraulic check problem’ for an ‘electricless station’ water supply.

	
	ElectricDesign:
	models the ‘hydraulic design problem’ for an ‘electric station’ water supply.

	
	ElectriclessDesign:
	models the ‘hydraulic design problem’ for an ‘electricless station’ water supply.

Subpackages

	business.station.arrangements package

	business.station.mixins package

	business.station.solvers package

Submodules

business.station.adapters module

	
class business.station.adapters.SoilStretchAdapter(_stretches: Tuple[business.station.soils.SoilStretch])

	Bases: object

	
cleaned_data()

	

business.station.climb module

	
class business.station.climb.ClimbStretch(_climbing_sequence: List[business.station.climb.ClimbingSegment], _soil_stretch: business.station.soils.SoilStretch, _pressure_limit: pint.quantity.build_quantity_class.<locals>.Quantity, _head_point: business.commons.energy.EnergyProfilePoint)

	Bases: business.commons.loggers.InitLoggerMixin, business.station.plots.PlotClimbStretchMixin

	
property get_valid_pressure_pathlength

	

	
property recursive_climb

	

	
roba()

	

	
class business.station.climb.ClimbingConduit(iterable=(), /)

	Bases: list

	
append(item)

	Append object to the end of the list.

	
property as_piped_segments

	Convert a ClimbingConduit into the corresponding tuple of PipedSegment’s.

	
property cost

	

	
class business.station.climb.ClimbingConduitsCollector(*args, **kwargs)

	Bases: list

Implemented without extending business_utils.TypedList since
TypedList extends collections.MutableSequence and makes the use of
core_utils.Singleton unfeasible (due to metaclass conflict between
Singleton and MutableSequence).

	
append(item)

	Append object to the end of the list.

	
class business.station.climb.ClimbingSegment(pathlength, commercial_pipe)

	Bases: tuple

Represent a segment of the feeder, with a given pipe and a given length.
Used when solving the ‘hydraulic design problem’, to optmize the feeder
with a systematic search approach.

	
property commercial_pipe

	Alias for field number 1

	
property pathlength

	Alias for field number 0

	
class business.station.climb.FeederClimbMixin

	Bases: object

	
property get_candidate_conduits_list

	the data structure must be must be a ‘list of lists’.

	Type

	Remark

	
business.station.climb.check_commercial_pipes_are_available(function)

	

business.station.constants module

Collection of constants used by the pumpstation foldes.

	
business.station.constants.RANDOM_SEARCH_RANGE_PAD = <Quantity(2, 'meter')>

	Prescribes the minimal hydraulic energy to be burned along a Trunk during feeder random search. This value magnitude is expected to be an integer.

	
business.station.constants.RANDOM_SEARCH_RANGE_STEP = <Quantity(10, 'meter')>

	Prescribes the difference of hydraulic energy between two successive attempts during feeder random search. This value magnitude is expected to be an integer.

business.station.coroutines module

	
class business.station.coroutines.AutomatedTypedList(ok_type, iterable=[])

	Bases: business.helpers.utils.TypedList

	
property best_from_collect_ranges

	

	
class business.station.coroutines.CoroutineLeaf(soil_stretch: business.station.soils.SoilStretch, name: str, down_elev: int)

	Bases: business.commons.loggers.InitLoggerMixin

	
down_elev: int

	

	
merger()

	

	
name: str

	

	
send(arg)

	

	
soil_stretch: business.station.soils.SoilStretch

	

	
class business.station.coroutines.CoroutineNode(soil_stretch: business.station.soils.SoilStretch, name: str, down_flight: int, next_coro_object: business.station.soils.SoilStretch)

	Bases: business.commons.loggers.InitLoggerMixin

	
static best_from_collect_ranges(list_of_lists)

	

	
down_flight: int

	

	
static is_failed(child_simplex)

	

	
merger()

	

	
name: str

	

	
next_coro_object: business.station.soils.SoilStretch

	

	
send(arg)

	

	
soil_stretch: business.station.soils.SoilStretch

	

	
class business.station.coroutines.CoroutineReturn

	Bases: business.helpers.utils.TypedList

	
property is_failed

	

	
class business.station.coroutines.CoroutineRoot(riser: business.station.riser.RiserDesign, name: str, down_flight: int, next_coro_object: business.station.soils.SoilStretch)

	Bases: business.commons.loggers.InitLoggerMixin

	
static best_from_collect_ranges(list_of_lists)

	Remark: this method could be turned into a @staticmethod. However,
the self is used for logging purposes.

	
down_flight: int

	

	
static is_failed(child_simplex)

	Remark: this method could be turned into a @staticmethod. However,
the self is used for logging purposes.

	
merger()

	

	
name: str

	

	
next_coro_object: business.station.soils.SoilStretch

	

	
riser: business.station.riser.RiserDesign

	

	
set_hydraulic_energy_at_submersible_outlet(value)

	

business.station.defaults module

business.station.definitions module

	
class business.station.definitions.FeederSegment(piped_segments=None, penalty=None)

	Bases: tuple

Represent a segment of the feeder, with a given pipe and a given length.
Used when solving the ‘hydraulic design problem’, to optmize the feeder
with a systematic search approach.

	
property penalty

	Alias for field number 1

	
property piped_segments

	Alias for field number 0

	
class business.station.definitions.StationCheckSolution(check_is_completed: str = None, solution: str = None, economic_cost: str = None)

	Bases: object

Represent a report of the hydraulic check problem in a station.

Applies to both electric and electriless stations, and these station provide
their customised values of fields ‘solution’ and ‘economic_cost’.

	
check_is_completed: str = None

	

	
economic_cost: str = None

	

	
property engine_power_curve_as_matplotlib

	

	
solution: str = None

	

	
class business.station.definitions.StationDesignSolution(check_is_completed: str = None, solution: str = None, economic_cost: str = None)

	Bases: object

Represent a report of the hydraulic check problem in a station.

Applies to both electric and electriless stations, and these station provide
their customised values of fields ‘solution’ and ‘economic_cost’.

	
check_is_completed: str = None

	

	
economic_cost: str = None

	

	
solution: str = None

	

business.station.exceptions module

	
exception business.station.exceptions.DemandMissing

	Bases: business.commons.exceptions.ImproperlyConfiguredWaterSystem

The water demand is unknown.

	
exception business.station.exceptions.DesignAtFixedFlowFailed(message, TODO_some_hint='TODO')

	Bases: business.station.exceptions.StationDesignUnfeasible

The ‘hydraulic design problem’ could not be solved for a given
value of the water flow.

	
exception business.station.exceptions.ForceMainDemandDataMissing

	Bases: business.commons.exceptions.RuralwaterException

The feeder has no water demand data associated with it.

Raised when running the ‘hydraulic design problem’: if water demand data
are absent then the ‘hydraulic design problem’ cannot be solved because
it is unknown for how much water the pumpstation must be designed.

	
exception business.station.exceptions.ImproperlyConfiguredPumpingStation

	Bases: business.commons.exceptions.ImproperlyConfiguredWaterSystem

Some data needed to solve the hydraulic design/check problem
for a pumping station were not provided by the user.

	
exception business.station.exceptions.NonsensicalSoilSectionsData

	Bases: business.commons.exceptions.RuralwaterException

A file can be read but the data make no logical sense.

	
exception business.station.exceptions.StationCheckUnfeasible

	Bases: business.commons.exceptions.RuralwaterException

The hydraulic check problem has a ‘does not work’ solution.

The station cannot be used in this case: the prime mover will not start.
This exception is common to ‘electric’ and ‘electricless’ stations,
which means both to fixed speed and variable speed pumping.

	
exception business.station.exceptions.StationDesignUnfeasible

	Bases: business.commons.exceptions.RuralwaterException

The ‘hydraulic design problem’ has a ‘does not work’ solution.

The station cannot be used in this case: the prime mover will not start.
This exception is common to ‘electric’ and ‘electricless’ stations,
which means both to fixed speed and variable speed pumping.

	
exception business.station.exceptions.UnadvisablePcdArrangement

	Bases: business.station.exceptions.UnadvisablePumpStationArrangement

UnadvisableDuty operating conditions in the electricless pump station.

Raised when setters of the components of the electricless pump station
raise unsadvisable conditions.

Example

	the plant’s borehole is set a flow exceeding its maximum abstraction

license.
* the plant’s treatment facility is set a flow exceeding the facility
capacity.

	
exception business.station.exceptions.UnadvisablePumpStationArrangement

	Bases: business.commons.exceptions.UnadvisableDuty

UnadvisableDuty operating conditions in the pump station.

business.station.feeder module

	
class business.station.feeder.FeederBaseMixin(**kwargs)

	Bases: business.commons.watermains.Watermain

	
property get_delta_elevation_wellhead_to_tank

	
	Returns

	
	Instance of helper.business_units.Q_,

	expressed in helper.business_units.ELEVATION_UNITS.

	Positive if water flows from a lower elevation to a higher.

	This is usually the case of a feeder (the borehole wellhead)

	is located at a lower elevation than the reservoir where the

	feeder is dischargin into.

	
property get_hydraulic_friction

	Return the energy burned off in the pipeline by the water flowing
inside it at the rate set by water_flow and as a result of the
current _piping_list

Note

Precondition: self._piped_segments are set and each pipe_segment has
commercial pipe and start_at field set.

	
property water_flow

	The water flow can never be set:
* in the design problem, it is set by the head site demand and
the daily workshift.
* in the check problem it is evaluated by the ‘check’ calculations.

	
class business.station.feeder.FeederCheck(**kwargs)

	Bases: business.station.feeder.FeederBaseMixin, business.commons.watermains.WatermainCheck

Represent the ‘hydraulic-check’ calculations in a feeder.

	
get_headloss_at_sample_flow(sample_water_flow)

	

	
class business.station.feeder.FeederDesign(**initkwargs)

	Bases: business.commons.traversals.PipeDesignPoolMixin, business.station.soils.FeederSoilsMixin, business.station.climb.FeederClimbMixin, business.station.feeder.FeederBaseMixin, business.station.feeder.ShortFeederDesignMixin, business.commons.watermains.WatermainDesign

	
property get_daily_work_hours

	

	
property get_headmost_soil_stretch

	

	
property get_my_water_demand_as_steady_flow

	Return the water flow required by the ‘hydraulic design problem’.

Return the steady flow, flowing continuously along the 24 hours of the
day, which satisfies the water demand associated with the Feeder.

	
class business.station.feeder.ShortFeederDesignMixin

	Bases: object

Algorithms to run first-guess calculations.

In a first gess calculation, the feeder of the pumpstation is considered
‘short’: under this assumption, the calcualtions do not need to consider
the pressure classes in the feeder. Instead, the calculatins assume that
the feeder may be designed with a unique diameter and with the lowest
available pressure class.

This mixin is useful also in designing those pumpstations where the
water is pumped from the borehole to a nearby reservoir.

business.station.initkwargs module

business.station.plots module

	
class business.station.plots.CheckProblemPlots

	Bases: object

	
plot_something()

	

	
class business.station.plots.ElectricPlotMixin

	Bases: business.station.plots.PlotAdaptersMixin

	
plot_check_problem_solution()

	

	
property plot_design_problem_solution

	

	
class business.station.plots.ElectriclessPlotMixin

	Bases: business.station.plots.PlotAdaptersMixin

	
property plot_check_problem_solution

	

	
property plot_design_problem_solution

	

	
class business.station.plots.PlotAdaptersMixin

	Bases: object

	
property get_max_design_flow_range

	

	
property get_min_design_flow_range

	

	
class business.station.plots.PlotClimbStretchMixin

	Bases: object

	
plot_recursive_climb(single_pipe_energy_line, messaggio='climb')

	

	
plots_directory = 'plots'

	

	
plots_files_extension = 'png'

	

	
yield_integer = count(1)

	

	
business.station.plots.convert_to_adimensional(function)

	

business.station.profile module

	
class business.station.profile.FeederElevationProfile(iterable: Iterable = [])

	Bases: business.station.mixins.interpolation.PointFactoryMixin, business.commons.energy.ElevationProfile

	
get_section_from_pathlength(from_pathlength)

	

	
get_section_inbetween_pathlengths(from_pathlength, until_pathlength)

	

	
class business.station.profile.SoilStretchElevationProfile(*args, **kwargs)

	Bases: business.station.profile.FeederElevationProfile

	
property pathlength

	Return the linear length of the hydraulic energy line.

	Returns

	a dimensional value

	Return type

	Quantity(“length”)

business.station.reports module

	
class business.station.reports.ElectricReportMixin

	Bases: object

	
class business.station.reports.ElectriclessReportMixin

	Bases: object

business.station.riser module

	
class business.station.riser.RiserCheck(pump_setting_magnitudo, commercial_pipe)

	Bases: object

	
get_headloss_at_sample_flow(sample_water_flow)

	

	
class business.station.riser.RiserDesign

	Bases: object

	
property get_burned_off_energy

	

	
property get_guessed_cost

	

	
property pathlength

	

	
property water_flow

	

	
property yield_single_diameter_solution

	

business.station.soils module

	
class business.station.soils.FeederSoilsMixin

	Bases: object

precondition: ‘FeederDesign’ object has attribute ‘_elevation_profile’

	
class business.station.soils.SoilStretch(_elevation_profile: business.station.profile.FeederElevationProfile, _requires_metallic_pipes: bool, _water_flow: float, _previous_soil_stretch: Any = None)

	Bases: business.commons.loggers.InitLoggerMixin, business.commons.mixins.linear.SingleLinprogStretchMixin, business.station.mixins.traversals.SgrMockSimplexSoilStretchMixin, business.commons.traversals.PipeDesignPoolMixin, business.commons.mixins.cost.PipesCostMixin, business.station.mixins.traversals.SgrTraversalSoilStretchMixin, business.commons.traversals.TraversalsTrunkOrStretchMixin

	
get_elevation_profile_from_tail_until_downrange(until_downrange)

	

	
property get_head_point_elevation

	

	
get_pathlength_inbetween_downranges(from_downrange, until_downrange)

	

	
get_rated_working_pressure(head_energy_point)

	

	
get_valid_pressure_pathlength(pressure_violation_point)

	

business.station.arrangements package

Submodules

business.station.arrangements.base module

Define a borehole-to-reservoir pump station, common to:

	both the hydraulic design and hydraulic check problems,

	both electric and electricless stations.

	
class business.station.arrangements.base.Station(**kwargs)

	Bases: business.commons.loggers.InitLogger

A class used to represent a pump station.

business.station.arrangements.check module

Define the ‘hydraulic check problem’ for a ‘station’ water supply .

Separate classes are provided for the electric station and
the electricless station.

	
class business.station.arrangements.check.ElectricCheck(**kwargs)

	Bases: business.station.solvers.base.StationMixin, business.station.solvers.check.ElectricCheckAlgorithmsMixin, business.station.views.reports.ElectricCheckReportMixin, business.tests.station.utils.ElectricCheckTestMixin, business.station.views.plots.ElectricCheckPlotMixin, business.station.arrangements.check.StationCheck

A class to represent an electric pumpstation when solving the
hydraulic check problem.

The physical system is composed as follows:
* a borehole
* an electric submersible pump
* a feeder pipeline from the borehole until a water storage reservoir

	
class business.station.arrangements.check.ElectriclessCheck(**kwargs)

	Bases: business.station.solvers.base.StationMixin, business.station.solvers.check.ElectriclessCheckAlgorithmsMixin, business.station.views.reports.ElectriclessCheckReportMixin, business.station.views.plots.ElectriclessCheckPlotMixin, business.tests.station.utils.ElectriclessCheckTestMixin, business.station.arrangements.check.StationCheck

A class to represent pumpstation that works without electric power,
when solving the hydraulic check problem.

The physical system is composed as follows:
* a borehole
* a positive displacement pump
* a powertrain: (diesel engine, clutch, vee-belts, drivehead and pump shaft)
* a feeder pipeline from the borehole until a water storage reservoir

	
property combination

	

	
property engine

	

	
property pump_depth

	

	
class business.station.arrangements.check.StationCheck(**kwargs)

	Bases: business.station.arrangements.base.Station

A pumpstation defined to solve the hydraulic check problem, ancestor of
classes specific to electric and electricless pumpstations.

	
xxx

	xxx

	Type

	Xxx

business.station.arrangements.design module

Define the ‘hydraulic design problem’ for a ‘station’ water supply .

Separate classes are provided for the electric station and
the electricless station.

	
class business.station.arrangements.design.ElectricDesign(**kwargs)

	Bases: business.station.solvers.design.ElectricDesignAlgorithmsMixin, business.station.views.reports.ElectricDesignReportMixin, business.tests.station.utils.ElectricDesignTestMixin, business.station.arrangements.design.StationDesign

Represent the electric pump station in the hydraulic design process.

The physical system is composed as follows:
* a borehole
* an electric submersible pump
* a feeder pipeline from the borehole until a water storage reservoir

	
DesignSolutionDetails

	alias of ElectricDesignSolutionDetails

	
class business.station.arrangements.design.ElectriclessDesign(**kwargs)

	Bases: business.station.solvers.base.StationMixin, business.station.solvers.design.ElectriclessDesignAlgorithmsMixin, business.station.views.reports.ElectriclessDesignReportMixin, business.tests.station.utils.ElectriclessDesignTestMixin, business.station.arrangements.design.StationDesign

A class to represent pumpstation that works without electric power,
when solving the ‘hydraulic design problem’.

The physical system is composed as follows:
* a borehole
* a positive displacement pump
* a powertrain: (diesel engine, clutch, vee-belts, drivehead and pump shaft)
* a feeder pipeline from the borehole until a water storage reservoir

Note

There is no __init__ (unlike in ElectricDesign); why?
Remarks
——-
Becasue electric and electricless designs differ in what follows:

In an electric arrangement, the borehole riser is a ‘standard’ pipe
(albeit metallic, sturdy), so the pipeline is made of two sections in
series: the borehole riser and the feeder.

In an electricless arrangement, the borehole riser is part of the pump
becasue the riser includes the pump shaft (which pertrbates the
hydraulic friction), so the pipeline is made of two sections in series:
the pump (its riser section) and the feeder.

	
DesignSolutionDetails

	alias of ElectriclessDesignSolutionDetails

	
class business.station.arrangements.design.StationDesign(**kwargs)

	Bases: business.station.arrangements.base.Station

A pumpstation defined to solve the hydraulic check problem, ancestor of
classes specific to electric and electricless pumpstations.

business.station.mixins package

Submodules

business.station.mixins.interpolation module

Collection of mixins to interpolate hydraulic enrgy points along station feeders.

	
class business.station.mixins.interpolation.PointFactoryMixin

	Bases: object

	
get_point_at_given_pathlength(pathlength)

	

business.station.mixins.traversals module

	
class business.station.mixins.traversals.SgrMockSimplexSoilStretchMixin

	Bases: object

	
property energy_at_head_point

	

	
property energy_at_tail_point

	

	
property pathlength

	

	
class business.station.mixins.traversals.SgrTraversalSoilStretchMixin

	Bases: object

Mixin gathering the methods to evaluate the most economical feeder
coupled to a submersible pump.

	
traversal_sgr()

	Return the most economical sequence of piped segments INGLESE constrained to:
* a given _water_flow
* a given water energy
* a given sequence of soil requirements INGLESE

	
best_from_collect_ranges(list_of_lists)

	Return the most economical piped sequence from those that
complied with the energy constraints.

This method receives data from the ‘sink’

	Returns

	TODO

	Return type

	TODO

	
property traversal_sgr

	

	
business.station.mixins.traversals.check_self_has_smooth_elevation_profile(function)

	Checks that the elevation profile along the soil stretch is ‘smooth enough’
that QUALE E’ LA LOGICA?

	
business.station.mixins.traversals.mock_temporarily_with_single_simplex(function)

	Replace temporarily the decorated method with _mock_simplex.

business.station.solvers package

The purpose of a pump is to overcome elevation differences and head losses due to pipe friction. The amount of head the pump must add to overcome elevation differences is dependent on system characteristic and topology (and independent of the pump discharge rate), and is referenced to as static head or static lift. Friction and minor losses, however, zre highly dependent on the rate of discharge through the pump. When these losses are added to the static head for a series of discharge rates, the resulting plot is called a system head curve.
The pump characteristic curve is a function of the pump and independent of the system, while the system head curve is dependent on the system and is independent of the pump. Unlike the pump curve, which is fixed for a given pump at a given speed, the system head curve slides up and down as the design flow changes / as different demands are chosen to for the design flow. Rather than there being a unique system head curve, a family of system head curves forms a band on the graph.

Submodules

business.station.solvers.base module

Colletion of mixins common to solving both the ‘hydraulic design and
‘hydraulic check’ problems.

	
class business.station.solvers.base.ElectricMixin

	Bases: object

Placeholder for future methods common to design and check problems.

	
class business.station.solvers.base.ElectriclessMixin

	Bases: object

Placeholder for future methods common to design and check problems.

	
class business.station.solvers.base.StationMixin

	Bases: object

	
water_flow(Quantity("volume/time"))

	Get or set the water flow of the pumpstation instance

	
property get_hydraulic_energy_excluding_riser_friction

	Return the hydraulic energy required by the pumpstation without
considering the friction energy loss in the riser.

This method is useful when dealing with progressive displacement
pumps, because they require a two-step calculation:
* first, the pump body is selected
* then, the pump body dictates the shaft and therefore a correction
to the riser friction, which is due to the shaft and could not be
evaluated before the pump doby had been selected in the previous step.

Note

Precondition: The hardware is set: the pump depth,
the _piped_segments in the feeder, the pump and the riser assembly.

	
property water_flow

	

business.station.solvers.check module

Collection of mixins that help solving the ‘hydraulic check problem’
for ‘station’ water supplies.

Separate classes are provided for the electric station and
the electricless station.

	
class business.station.solvers.check.ElectricCheckAlgorithmsMixin

	Bases: object

Algorithms for the check problem of an electric pumpstation.

	
solve_hydraulic_check_problem

	solve the ‘hydarulic check problem’ and set the results in the
calculations report.

	
property get_hydraulic_energy_at_wellhead

	

	
property solve_hydraulic_check_problem

	Solve the ‘hydarulic check problem’.

Note

This is a fixed pump speed solution, so it differs from that of the
‘electricless’ problem, whch deals instead with variable speed pumping.

When the pump head discharge curve and the system head curve are
plotted on the same axes, only one point lies on both the pump
characteristic curve and the system head curve. The point where the
two curves intersect, the operating point, is the actual combination
of discharge and energy head that will be produced by the pump when
insatlled in that piping system.

The problem is solved by finding the intersection between the system
resititve curve (hydraulic energy required by the borehole and the
pipeline) and the pump delivery curve.

The results are stored into the _calculations_report attribute and
in the plots generated through the process.

Note

Precondition: The user interface (through javascript) ensures
that the input data were provided.

	
class business.station.solvers.check.ElectriclessCheckAlgorithmsMixin

	Bases: object

Algorithms for the check problem of a pumpstation
that makes no use of electric power.

	
solve_hydraulic_check_problem

	solve the ‘hydarulic check problem’ and set the results in the
calculations report.

	
property solve_hydraulic_check_problem

	Solve the ‘hydarulic check problem’.

Note

This is a variable pump speed solution, so it differs from that of the
‘electric’ problem, whch deals instead with fixed speed pumping.

The problem is solved by evaluating the pumpstation duty point and
working conditions for every rotation speed of the engine.

The results are stored into the _calculations_report attribute and
in the plots generated through the process.

Note

Precondition: The user interface (through javascript) ensures
that the input data were provided.

business.station.solvers.design module

Collection of mixins that help solving the ‘hydraulic design problem’
for ‘station’ water supplies.

Separate classes are provided for the electric pumpstation and for the
one without use of energy.

	
class business.station.solvers.design.ElectricDesignAlgorithmsMixin

	Bases: business.station.solvers.base.ElectricMixin, business.station.plots.ElectricPlotMixin, business.station.reports.ElectricReportMixin

Algorithms for the check problem of an electric pumpstation.

	
solve_hydraulic_design_problem

	solve the hydarulic design problem considering the current water flow
and set the results in the calculations report

	
property solve_hydraulic_design_problem

	

	
class business.station.solvers.design.ElectriclessDesignAlgorithmsMixin

	Bases: business.station.solvers.base.ElectriclessMixin, business.station.plots.ElectriclessPlotMixin, business.station.reports.ElectriclessReportMixin

Algorithms for the check problem of a pumpstation that
does not make use of electric power.

Perform the ‘systematic search’ to optimize the ‘hydraulic design problem’.

	
property solve_hydraulic_design_problem

	

business.tests package

Submodules

business.tests.fixtures module

business.tests.run module

 Python Module Index

 b |
 c |
 u

 		 	

 		
 b	

 	[image: -]
 	
 business	

 	
 	
 business.commons	

 	
 	
 business.commons.adapters	

 	
 	
 business.commons.constants	

 	
 	
 business.commons.coroutines	

 	
 	
 business.commons.defaults	

 	
 	
 business.commons.definitions	

 	
 	
 business.commons.energy	

 	
 	
 business.commons.exceptions	

 	
 	
 business.commons.loggers	

 	
 	
 business.commons.mixins	

 	
 	
 business.commons.mixins.cost	

 	
 	
 business.commons.mixins.interpolation	

 	
 	
 business.commons.mixins.linear	

 	
 	
 business.commons.TODO_settings	

 	
 	
 business.commons.traversals	

 	
 	
 business.commons.watermains	

 	
 	
 business.gravity	

 	
 	
 business.gravity.arrangements	

 	
 	
 business.gravity.arrangements.base	

 	
 	
 business.gravity.arrangements.check	

 	
 	
 business.gravity.arrangements.design	

 	
 	
 business.gravity.constants	

 	
 	
 business.gravity.coroutines	

 	
 	
 business.gravity.exceptions	

 	
 	
 business.gravity.mixins	

 	
 	
 business.gravity.mixins.airlock	

 	
 	
 business.gravity.mixins.crawl	

 	
 	
 business.gravity.mixins.energy	

 	
 	
 business.gravity.mixins.flows	

 	
 	
 business.gravity.mixins.topology	

 	
 	
 business.gravity.mixins.trimming	

 	
 	
 business.gravity.mixins.zoning	

 	
 	
 business.gravity.solvers	

 	
 	
 business.gravity.solvers.check	

 	
 	
 business.gravity.solvers.design	

 	
 	
 business.gravity.stretches	

 	
 	
 business.gravity.stretching	

 	
 	
 business.gravity.stretching.crawl	

 	
 	
 business.gravity.stretching.linear	

 	
 	
 business.gravity.stretching.pressure	

 	
 	
 business.gravity.stretching.setters	

 	
 	
 business.gravity.trunking	

 	
 	
 business.gravity.trunking.setters	

 	
 	
 business.gravity.trunking.traversals	

 	
 	
 business.gravity.trunks	

 	
 	
 business.gravity.views	

 	
 	
 business.gravity.views.definitions	

 	
 	
 business.gravity.views.plots	

 	
 	
 business.gravity.views.reports	

 	
 	
 business.groundwater	

 	
 	
 business.groundwater.boreholes	

 	
 	
 business.groundwater.constants	

 	
 	
 business.groundwater.exceptions	

 	
 	
 business.groundwater.plots	

 	
 	
 business.groundwater.units	

 	
 	
 business.helpers	

 	
 	
 business.helpers.definitions	

 	
 	
 business.helpers.guards	

 	
 	
 business.helpers.roundings	

 	
 	
 business.helpers.units	

 	
 	
 business.helpers.utils	

 	
 	
 business.loggers	

 	
 	
 business.manufacturers	

 	
 	
 business.manufacturers.catalogs	

 	
 	
 business.manufacturers.catalogs.bases	

 	
 	
 business.manufacturers.catalogs.engines	

 	
 	
 business.manufacturers.catalogs.pipes	

 	
 	
 business.manufacturers.catalogs.progressives	

 	
 	
 business.manufacturers.catalogs.submersibles	

 	
 	
 business.manufacturers.components	

 	
 	
 business.manufacturers.components.engines	

 	
 	
 business.manufacturers.components.pipes	

 	
 	
 business.manufacturers.components.progressives	

 	
 	
 business.manufacturers.components.submersibles	

 	
 	
 business.manufacturers.constants	

 	
 	
 business.manufacturers.exceptions	

 	
 	
 business.manufacturers.exceptions.base	

 	
 	
 business.manufacturers.exceptions.engines	

 	
 	
 business.manufacturers.exceptions.pipes	

 	
 	
 business.manufacturers.exceptions.progressives	

 	
 	
 business.manufacturers.exceptions.submersibles	

 	
 	
 business.manufacturers.readers	

 	
 	
 business.manufacturers.services	

 	
 	
 business.manufacturers.utils	

 	
 	
 business.station	

 	
 	
 business.station.adapters	

 	
 	
 business.station.arrangements	

 	
 	
 business.station.arrangements.base	

 	
 	
 business.station.arrangements.check	

 	
 	
 business.station.arrangements.design	

 	
 	
 business.station.climb	

 	
 	
 business.station.constants	

 	
 	
 business.station.coroutines	

 	
 	
 business.station.defaults	

 	
 	
 business.station.definitions	

 	
 	
 business.station.exceptions	

 	
 	
 business.station.feeder	

 	
 	
 business.station.initkwargs	

 	
 	
 business.station.mixins	

 	
 	
 business.station.mixins.interpolation	

 	
 	
 business.station.mixins.traversals	

 	
 	
 business.station.plots	

 	
 	
 business.station.profile	

 	
 	
 business.station.reports	

 	
 	
 business.station.riser	

 	
 	
 business.station.soils	

 	
 	
 business.station.solvers	

 	
 	
 business.station.solvers.base	

 	
 	
 business.station.solvers.check	

 	
 	
 business.station.solvers.design	

 	
 	
 business.tests	

 	
 	
 business.tests.fixtures	

 		 	

 		
 c	

 	[image: -]
 	
 core	

 	
 	
 core.constants	

 	
 	
 core.constants.arrangements	

 	
 	
 core.constants.civil	

 	
 	
 core.constants.demand	

 	
 	
 core.constants.design	

 	
 	
 core.constants.dirs	

 	
 	
 core.constants.groundwater	

 	
 	
 core.constants.pipeworks	

 	
 	
 core.constants.soils	

 	
 	
 core.constants.topography	

 	
 	
 core.constants.topology	

 	
 	
 core.constants.treatment	

 	
 	
 core.constants.trunks	

 	
 	
 core.enumerations	

 	
 	
 core.enumerations.linprog	

 	
 	
 core.services	

 	
 	
 core.services.caches	

 	
 	
 core.services.mapquest	

 	
 	
 core.settings	

 	
 	
 core.settings.csv	

 	
 	
 core.settings.mapquest	

 	
 	
 core.settings.persistence	

 	
 	
 core.settings.redis	

 	
 	
 core.utils	

 	
 	
 core.utils.patterns	

 	
 	
 core.utils.topography	

 		 	

 		
 u	

 	[image: -]
 	
 uxwizard	

 	
 	
 uxwizard.apps	

 	
 	
 uxwizard.tests	

 	
 	
 uxwizard.tests.acceptance	

 	
 	
 uxwizard.tests.app	

 	
 	
 uxwizard.tests.models	

 	
 	
 uxwizard.tests.utils	

 	
 	
 uxwizard.tests.views	

 	
 	
 uxwizard.urls	

 	
 	
 uxwizard.urls.gravity	

 	
 	
 uxwizard.urls.gravity.base	

 	
 	
 uxwizard.urls.gravity.check	

 	
 	
 uxwizard.urls.gravity.design	

 	
 	
 uxwizard.urls.splash	

 	
 	
 uxwizard.urls.station	

 	
 	
 uxwizard.urls.station.base	

 	
 	
 uxwizard.urls.station.check	

 	
 	
 uxwizard.urls.station.design	

 	
 	
 uxwizard.views	

 	
 	
 uxwizard.views.gravity	

 	
 	
 uxwizard.views.gravity.base	

 	
 	
 uxwizard.views.gravity.check	

 	
 	
 uxwizard.views.gravity.design	

 	
 	
 uxwizard.views.splash	

 	
 	
 uxwizard.views.station	

 	
 	
 uxwizard.views.station.base	

 	
 	
 uxwizard.views.station.check	

 	
 	
 uxwizard.views.station.design	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	_api_key_to_load (business.manufacturers.catalogs.engines.EnginePool attribute)

 	(business.manufacturers.catalogs.progressives.BodyPool attribute)

 	(business.manufacturers.catalogs.progressives.ColumnPool attribute)

 	(business.manufacturers.catalogs.progressives.CombinationPool attribute)

 	(business.manufacturers.catalogs.progressives.DriveheadPool attribute)

 	(business.manufacturers.catalogs.progressives.ShaftPool attribute)

 	(business.manufacturers.catalogs.submersibles.SubmersiblePool attribute)

 	_commercial_pipe (business.helpers.definitions.PipedSegment attribute)

 	_component_class (business.manufacturers.catalogs.progressives.BaseColumnLoader attribute)

 	(business.manufacturers.readers.DriveheadLoader attribute)

 	(business.manufacturers.readers.EngineLoader attribute)

 	(business.manufacturers.readers.ProgressiveBodyLoader attribute)

 	(business.manufacturers.readers.ShaftLoader attribute)

 	_ends_at_pathlength (business.helpers.definitions.PipedSegment attribute)

 	
 	_get_absorbed_mechanical_power() (business.manufacturers.components.progressives.BodyMechanicalRatingMixin method)

 	_get_dimensional_records_as_tuple (business.manufacturers.readers.BaseComponentLoader attribute)

 	_get_friction_per_unit_pathlength() (business.manufacturers.components.progressives.ColumnRatingMixin method)

 	_head_point_pressure (business.commons.traversals.TraversalsTrunkOrStretchMixin attribute)

 	_max_rated_flow (business.manufacturers.components.submersibles.SubmersiblePump attribute)

 	_min_rated_flow (business.manufacturers.components.submersibles.SubmersiblePump attribute)

 	_rest_api_reader (business.manufacturers.catalogs.engines.EnginePool attribute)

 	(business.manufacturers.catalogs.progressives.BodyPool attribute)

 	(business.manufacturers.catalogs.progressives.ColumnPool attribute)

 	(business.manufacturers.catalogs.progressives.CombinationPool attribute)

 	(business.manufacturers.catalogs.progressives.DriveheadPool attribute)

 	(business.manufacturers.catalogs.progressives.ShaftPool attribute)

 	_starts_at_pathlength (business.helpers.definitions.PipedSegment attribute)

 	_tail_point_pressure (business.commons.traversals.TraversalsTrunkOrStretchMixin attribute)

A

 	
 	absorbed_mechanical_power() (business.manufacturers.components.progressives.BodyCheck property)

 	(business.manufacturers.components.progressives.BodyDesign property)

 	(business.manufacturers.components.progressives.Combination property)

 	(business.manufacturers.components.progressives.Drivehead property)

 	(business.manufacturers.components.progressives.Shaft property)

 	absorbed_power (business.manufacturers.components.engines.Clutch attribute)

 	absorbed_power() (business.manufacturers.components.engines.Clutch property)

 	(business.manufacturers.components.progressives.Drivehead method)

 	(business.manufacturers.components.progressives.Shaft method), [1]

 	AccumulatorDuringRange (class in business.gravity.coroutines)

 	add() (business.helpers.utils.TypedSet method)

 	adj_list (business.gravity.coroutines.CoroutineNode attribute)

 	(business.gravity.coroutines.CoroutineRoot attribute)

 	adopt() (business.manufacturers.components.progressives.Column property)

 	(business.manufacturers.components.progressives.CombinationCheck property)

 	(business.manufacturers.utils.MonostateMixin property)

 	ajaxpolling() (in module business.helpers.utils)

 	AllCommercialPipesAreUnsuitableBorewise

 	AllCommercialPipesAreUnsuitableForSimplex

 	AllCommercialPipesAreUnsuitableSpeedwise

 	AllElectricSourcesAreUnsuitable

 	AllEnginesAreUnsuitable

 	AllPumpCombinationsAreUnsuitable

 	AllPumpsAreUnsuitable

 	AllSubmersiblePumpsAreUnsuitable

 	AltimeterFileAdapter (class in business.commons.adapters)

 	api_keys_to_load (business.manufacturers.catalogs.pipes.PipePool attribute), [1]

 	(business.manufacturers.catalogs.pipes.RiserPipePool attribute), [1]

 	(business.manufacturers.catalogs.pipes.SteelPipePool attribute), [1]

 	
 	api_uri (business.manufacturers.readers.BaseComponentLoader attribute)

 	append() (business.station.climb.ClimbingConduit method)

 	(business.station.climb.ClimbingConduitsCollector method)

 	AquiferDepletion

 	as_decimal() (in module business.helpers.units)

 	as_dict() (business.manufacturers.catalogs.bases.BaseCatalog property)

 	(business.manufacturers.catalogs.pipes.BasePipePool property)

 	as_geometry() (business.commons.energy.EnergyProfilePoint property)

 	as_humanised() (business.commons.energy.EnergyProfilePoint property)

 	as_integer() (in module business.helpers.units)

 	as_linestring() (business.commons.energy.BaseEnergyProfileMixin method)

 	(business.commons.energy.BaseEnergyProfileMixin property)

 	(business.helpers.definitions.FlowVsEnergyCurve property)

 	as_matplotlib_curve() (business.commons.energy.PlotBaseEnergyProfileMixin property)

 	as_piped_segments() (business.station.climb.ClimbingConduit property)

 	as_rounded() (in module business.helpers.units)

 	as_serializable() (business.commons.energy.EnergyProfile property)

 	as_shapely_point() (business.helpers.definitions.FlowVsEnergyPoint method)

 	(business.helpers.definitions.FlowVsEnergyPoint property)

 	as_subtrunk() (business.gravity.trunks.AtmosphericTrunkDesign property)

 	(business.gravity.trunks.TrunkDesign property)

 	AtmosphericSubtrunk (class in business.gravity.stretches)

 	AtmosphericTraversalTrunkMixin (class in business.gravity.trunking.traversals)

 	AtmosphericTrunkCheck (class in business.gravity.trunks)

 	AtmosphericTrunkDesign (class in business.gravity.trunks)

 	AtmosphericTrunkMixin (class in business.gravity.trunks)

 	attempt_crawling() (business.gravity.stretches.Subtrunk property)

 	attempt_simplex() (business.gravity.stretching.linear.SwapStretchMixin method), [1]

 	AutomatedTypedList (class in business.station.coroutines)

B

 	
 	back_high (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	back_low (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	back_mid (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	BaseBorehole (class in business.groundwater.boreholes)

 	BaseCatalog (class in business.manufacturers.catalogs.bases)

 	BaseColumnLoader (class in business.manufacturers.catalogs.progressives)

 	BaseCombinationLoader (class in business.manufacturers.catalogs.progressives)

 	BaseComponentLoader (class in business.manufacturers.readers)

 	BaseEnergyMixin (class in business.gravity.mixins.energy)

 	BaseEnergyProfileMixin (class in business.commons.energy)

 	BaseGravity (class in business.gravity.arrangements.base)

 	BaseGravityReportMixin (class in business.gravity.views.reports)

 	BaseLinprogFailure

 	BasePipePool (class in business.manufacturers.catalogs.pipes)

 	BaseTrunk (class in business.gravity.trunks)

 	BaseTrunksNetworkMixin (class in business.gravity.mixins.topology)

 	best_during_range() (business.gravity.coroutines.AccumulatorDuringRange property)

 	best_from_collect_ranges() (business.station.coroutines.AutomatedTypedList property)

 	(business.station.coroutines.CoroutineNode static method)

 	(business.station.coroutines.CoroutineRoot static method)

 	(business.station.mixins.traversals.SgrTraversalSoilStretchMixin method)

 	Body (class in business.manufacturers.components.progressives)

 	BodyCheck (class in business.manufacturers.components.progressives)

 	BodyCheckPool (class in business.manufacturers.catalogs.progressives)

 	BodyDesign (class in business.manufacturers.components.progressives)

 	BodyDesignPool (class in business.manufacturers.catalogs.progressives)

 	BodyHydraulicRatingMixin (class in business.manufacturers.components.progressives)

 	BodyMechanicalRatingMixin (class in business.manufacturers.components.progressives)

 	BodyPool (class in business.manufacturers.catalogs.progressives)

 	BoreholeCheck (class in business.groundwater.boreholes)

 	BoreholeDesign (class in business.groundwater.boreholes)

 	brake_power (business.helpers.definitions.EngineWorkingConditions attribute)

 	brake_power() (business.helpers.definitions.EngineWorkingConditions property)

 	BSDC_UNITS (in module business.helpers.units)

 	burned_energy() (business.helpers.definitions.PipedSegment method)

 	(business.helpers.definitions.PipedSegment property)

 	
 business

 	module

 	
 business.commons

 	module

 	
 business.commons.adapters

 	module

 	
 business.commons.constants

 	module

 	
 business.commons.coroutines

 	module

 	
 business.commons.defaults

 	module

 	
 business.commons.definitions

 	module

 	
 business.commons.energy

 	module

 	
 business.commons.exceptions

 	module

 	
 business.commons.loggers

 	module

 	
 business.commons.mixins

 	module

 	
 business.commons.mixins.cost

 	module

 	
 business.commons.mixins.interpolation

 	module

 	
 business.commons.mixins.linear

 	module

 	
 business.commons.TODO_settings

 	module

 	
 business.commons.traversals

 	module

 	
 business.commons.watermains

 	module

 	
 business.gravity

 	module

 	
 business.gravity.arrangements

 	module

 	
 business.gravity.arrangements.base

 	module

 	
 business.gravity.arrangements.check

 	module

 	
 business.gravity.arrangements.design

 	module

 	
 business.gravity.constants

 	module

 	
 business.gravity.coroutines

 	module

 	
 business.gravity.exceptions

 	module

 	
 business.gravity.mixins

 	module

 	
 business.gravity.mixins.airlock

 	module

 	
 business.gravity.mixins.crawl

 	module

 	
 business.gravity.mixins.energy

 	module

 	
 business.gravity.mixins.flows

 	module

 	
 business.gravity.mixins.topology

 	module

 	
 business.gravity.mixins.trimming

 	module

 	
 business.gravity.mixins.zoning

 	module

 	
 business.gravity.solvers

 	module

 	
 business.gravity.solvers.check

 	module

 	
 business.gravity.solvers.design

 	module

 	
 business.gravity.stretches

 	module

 	
 business.gravity.stretching

 	module

 	
 business.gravity.stretching.crawl

 	module

 	
 business.gravity.stretching.linear

 	module

 	
 business.gravity.stretching.pressure

 	module

 	
 business.gravity.stretching.setters

 	module

 	
 business.gravity.trunking

 	module

 	
 business.gravity.trunking.setters

 	module

 	
 business.gravity.trunking.traversals

 	module

 	
 business.gravity.trunks

 	module

 	
 business.gravity.views

 	module

 	
 business.gravity.views.definitions

 	module

 	
 	
 business.gravity.views.plots

 	module

 	
 business.gravity.views.reports

 	module

 	
 business.groundwater

 	module

 	
 business.groundwater.boreholes

 	module

 	
 business.groundwater.constants

 	module

 	
 business.groundwater.exceptions

 	module

 	
 business.groundwater.plots

 	module

 	
 business.groundwater.units

 	module

 	
 business.helpers

 	module

 	
 business.helpers.definitions

 	module

 	
 business.helpers.guards

 	module

 	
 business.helpers.roundings

 	module

 	
 business.helpers.units

 	module

 	
 business.helpers.utils

 	module

 	
 business.loggers

 	module

 	
 business.manufacturers

 	module

 	
 business.manufacturers.catalogs

 	module

 	
 business.manufacturers.catalogs.bases

 	module

 	
 business.manufacturers.catalogs.engines

 	module

 	
 business.manufacturers.catalogs.pipes

 	module

 	
 business.manufacturers.catalogs.progressives

 	module

 	
 business.manufacturers.catalogs.submersibles

 	module

 	
 business.manufacturers.components

 	module

 	
 business.manufacturers.components.engines

 	module

 	
 business.manufacturers.components.pipes

 	module

 	
 business.manufacturers.components.progressives

 	module

 	
 business.manufacturers.components.submersibles

 	module

 	
 business.manufacturers.constants

 	module

 	
 business.manufacturers.exceptions

 	module

 	
 business.manufacturers.exceptions.base

 	module

 	
 business.manufacturers.exceptions.engines

 	module

 	
 business.manufacturers.exceptions.pipes

 	module

 	
 business.manufacturers.exceptions.progressives

 	module

 	
 business.manufacturers.exceptions.submersibles

 	module

 	
 business.manufacturers.readers

 	module

 	
 business.manufacturers.services

 	module

 	
 business.manufacturers.utils

 	module

 	
 business.station

 	module

 	
 business.station.adapters

 	module

 	
 business.station.arrangements

 	module

 	
 business.station.arrangements.base

 	module

 	
 business.station.arrangements.check

 	module

 	
 business.station.arrangements.design

 	module

 	
 business.station.climb

 	module

 	
 business.station.constants

 	module

 	
 business.station.coroutines

 	module

 	
 business.station.defaults

 	module

 	
 business.station.definitions

 	module

 	
 business.station.exceptions

 	module

 	
 business.station.feeder

 	module

 	
 business.station.initkwargs

 	module

 	
 business.station.mixins

 	module

 	
 business.station.mixins.interpolation

 	module

 	
 business.station.mixins.traversals

 	module

 	
 business.station.plots

 	module

 	
 business.station.profile

 	module

 	
 business.station.reports

 	module

 	
 business.station.riser

 	module

 	
 business.station.soils

 	module

 	
 business.station.solvers

 	module

 	
 business.station.solvers.base

 	module

 	
 business.station.solvers.check

 	module

 	
 business.station.solvers.design

 	module

 	
 business.tests

 	module

 	
 business.tests.fixtures

 	module

C

 	
 	CacheCsvRows (class in business.commons.adapters)

 	check_commercial_pipes_are_available() (in module business.station.climb)

 	check_is_column_working_conditions() (in module business.helpers.guards)

 	check_is_completed (business.commons.definitions.CheckCalculationsReport attribute)

 	(business.station.definitions.StationCheckSolution attribute)

 	(business.station.definitions.StationDesignSolution attribute)

 	check_is_pipe_working_conditions() (in module business.helpers.guards)

 	check_is_pressure() (in module business.helpers.guards)

 	check_is_rpm() (in module business.helpers.guards)

 	check_is_vertical_shift() (in module business.helpers.guards)

 	check_is_waterflow() (in module business.helpers.guards)

 	check_self_has_smooth_elevation_profile() (in module business.station.mixins.traversals)

 	check_solution (business.commons.definitions.CheckCalculationsReport attribute)

 	CheckCalculationsReport (class in business.commons.definitions)

 	CheckEnergyNetworkMixin (class in business.gravity.mixins.energy)

 	CheckProblemPlots (class in business.station.plots)

 	CheckSolution (class in business.commons.definitions)

 	CheckTrunksNetworkMixin (class in business.gravity.mixins.topology)

 	classproperty (class in core.utils.patterns)

 	cleaned_data (business.commons.adapters.AltimeterFileAdapter attribute)

 	(business.commons.adapters.TrustedRawAltimetricFileAdapter attribute)

 	cleaned_data() (business.commons.adapters.AltimeterFileAdapter property)

 	(business.commons.adapters.LevelrodFileAdapter property)

 	(business.commons.adapters.TrustedRawAltimetricFileAdapter property)

 	(business.commons.adapters.UntrustedRawAltimetricFileAdapter property)

 	(business.station.adapters.SoilStretchAdapter method)

 	ClimbingConduit (class in business.station.climb)

 	ClimbingConduitsCollector (class in business.station.climb)

 	ClimbingSegment (class in business.station.climb)

 	ClimbStretch (class in business.station.climb)

 	Clutch (class in business.manufacturers.components.engines)

 	Column (class in business.manufacturers.components.progressives)

 	ColumnCheck (class in business.manufacturers.components.progressives)

 	ColumnCheckLoader (class in business.manufacturers.catalogs.progressives)

 	ColumnCheckPool (class in business.manufacturers.catalogs.progressives)

 	ColumnDesign (class in business.manufacturers.components.progressives)

 	ColumnDesignLoader (class in business.manufacturers.catalogs.progressives)

 	ColumnDesignPool (class in business.manufacturers.catalogs.progressives)

 	ColumnPool (class in business.manufacturers.catalogs.progressives)

 	ColumnRatingMixin (class in business.manufacturers.components.progressives)

 	Combination (class in business.manufacturers.components.progressives)

 	combination() (business.station.arrangements.check.ElectriclessCheck property)

 	CombinationCheck (class in business.manufacturers.components.progressives)

 	CombinationCheckLoader (class in business.manufacturers.catalogs.progressives)

 	CombinationCheckPool (class in business.manufacturers.catalogs.progressives)

 	CombinationDesign (class in business.manufacturers.components.progressives)

 	CombinationDesignLoader (class in business.manufacturers.catalogs.progressives)

 	CombinationDesignPool (class in business.manufacturers.catalogs.progressives)

 	CombinationPool (class in business.manufacturers.catalogs.progressives)

 	commercial_pipe() (business.station.climb.ClimbingSegment property)

 	commercial_pipes (business.commons.traversals.PipeDesignPoolMixin attribute)

 	commercial_pipes() (business.commons.traversals.PipeDesignPoolMixin property)

 	convert_to_adimensional() (in module business.station.plots)

 	
 core

 	module

 	
 core.constants

 	module

 	
 core.constants.arrangements

 	module

 	
 core.constants.civil

 	module

 	
 core.constants.demand

 	module

 	
 core.constants.design

 	module

 	
 core.constants.dirs

 	module

 	
 core.constants.groundwater

 	module

 	
 	
 core.constants.pipeworks

 	module

 	
 core.constants.soils

 	module

 	
 core.constants.topography

 	module

 	
 core.constants.topology

 	module

 	
 core.constants.treatment

 	module

 	
 core.constants.trunks

 	module

 	
 core.enumerations

 	module

 	
 core.enumerations.linprog

 	module

 	
 core.services

 	module

 	
 core.services.caches

 	module

 	
 core.services.mapquest

 	module

 	
 core.settings

 	module

 	
 core.settings.csv

 	module

 	
 core.settings.mapquest

 	module

 	
 core.settings.persistence

 	module

 	
 core.settings.redis

 	module

 	
 core.utils

 	module

 	
 core.utils.patterns

 	module

 	
 core.utils.topography

 	module

 	coroutine() (in module business.helpers.utils)

 	CoroutineLeaf (class in business.gravity.coroutines)

 	(class in business.station.coroutines)

 	CoroutineMinima (class in business.commons.coroutines)

 	CoroutineMixin (class in business.gravity.coroutines)

 	CoroutineNode (class in business.gravity.coroutines)

 	(class in business.station.coroutines)

 	CoroutineReturn (class in business.station.coroutines)

 	CoroutineRoot (class in business.gravity.coroutines)

 	(class in business.station.coroutines)

 	CorruptedDrawdownData

 	CorruptedLandElevationFile

 	cost() (business.station.climb.ClimbingConduit property)

 	cost_per_beneficiary() (business.commons.definitions.DesignSolution property)

 	cost_per_liter() (business.commons.definitions.DesignSolution property)

 	coverage() (business.manufacturers.components.progressives.BodyDesign property)

 	(business.manufacturers.components.progressives.BodyHydraulicRatingMixin method)

 	coverage_as_matplotlib() (business.manufacturers.components.progressives.BodyHydraulicRatingMixin method)

 	(business.manufacturers.components.progressives.PlotsMixin method)

 	(business.manufacturers.components.progressives.PlotsMixin property)

 	crawl() (business.gravity.stretches.Subtrunk method)

 	crawl_pipes() (business.gravity.mixins.crawl.TrunkSolverStretchMixin property)

 	CrawlSolverStretchMixin (class in business.gravity.stretching.crawl)

 	CREATE_AS_CASESTUDY_INPUT (in module uxwizard.views.gravity.check)

 	(in module uxwizard.views.gravity.design)

 	(in module uxwizard.views.station.check)

 	(in module uxwizard.views.station.design)

 	create_point_at_given_downrange() (business.commons.mixins.interpolation.PointFactoryMixin method)

 	CurrentSimplexesList (class in business.gravity.coroutines)

D

 	
 	DAILY_DEMAND_UNITS (in module business.helpers.units)

 	DEFAULT_SUBMERGENCE (in module business.groundwater.constants)

 	DemandMissing

 	DendridicCheckMixin (class in business.gravity.solvers.check)

 	design_details() (business.commons.definitions.DesignSolution property)

 	design_is_successful (business.commons.definitions.DesignCalculationsReport attribute)

 	(business.gravity.views.definitions.ZoneDesignReport attribute)

 	design_years (in module business.commons.defaults)

 	DesignAtFixedFlowFailed

 	DesignCalculationsReport (class in business.commons.definitions)

 	DesignSolution (class in business.commons.definitions)

 	DesignSolutionDetails (business.station.arrangements.design.ElectricDesign attribute)

 	(business.station.arrangements.design.ElectriclessDesign attribute)

 	DesignTrunksNetworkMixin (class in business.gravity.mixins.topology)

 	DIAMETER_UNITS (in module business.helpers.units)

 	DIESEL_SPECIFIC_WEIGHT (in module business.manufacturers.constants)

 	discard() (business.helpers.utils.TypedSet method)

 	dispatch_np_type (business.manufacturers.components.engines.EngineRatingMixin attribute), [1]

 	(business.manufacturers.components.progressives.BodyHydraulicRatingMixin attribute), [1]

 	(business.manufacturers.components.submersibles.SubmersiblePump attribute), [1]

 	dispatch_units (business.manufacturers.components.engines.EngineRatingMixin attribute), [1]

 	(business.manufacturers.components.progressives.BodyHydraulicRatingMixin attribute), [1]

 	(business.manufacturers.components.submersibles.SubmersiblePump attribute), [1]

 	DISTANCE_UNITS (in module business.helpers.units)

 	do_get_step_0() (in module uxwizard.views.gravity.check)

 	(in module uxwizard.views.gravity.design)

 	(in module uxwizard.views.station.design)

 	
 	do_post_step_0() (in module uxwizard.views.gravity.check)

 	(in module uxwizard.views.gravity.design)

 	(in module uxwizard.views.station.design)

 	do_postcondition() (in module business.helpers.utils)

 	do_precondition() (in module business.helpers.utils)

 	down_elev (business.gravity.coroutines.CoroutineLeaf attribute)

 	(business.station.coroutines.CoroutineLeaf attribute)

 	down_flight (business.gravity.coroutines.CoroutineNode attribute)

 	(business.gravity.coroutines.CoroutineRoot attribute)

 	(business.station.coroutines.CoroutineNode attribute)

 	(business.station.coroutines.CoroutineRoot attribute)

 	downrange (business.commons.energy.EnergyProfilePoint attribute), [1]

 	downrange() (business.commons.energy.BaseEnergyProfileMixin method)

 	(business.commons.energy.BaseEnergyProfileMixin property)

 	Drivehead (class in business.manufacturers.components.progressives)

 	DriveheadCheck (class in business.manufacturers.components.progressives)

 	DriveheadDesign (class in business.manufacturers.components.progressives)

 	DriveheadLoader (class in business.manufacturers.readers)

 	DriveheadPool (class in business.manufacturers.catalogs.progressives)

 	duty_after_column_friction() (business.manufacturers.components.progressives.BodyDesign property)

 	duty_before_column_friction() (business.manufacturers.catalogs.progressives.CombinationDesignPool property)

 	dwl() (business.groundwater.boreholes.BaseBorehole property)

 	(business.groundwater.boreholes.DwlVsFlowPoint property)

 	DWL_UNITS (in module business.groundwater.units)

 	DwlVsFlowPoint (class in business.groundwater.boreholes)

E

 	
 	economic_cost (business.station.definitions.StationCheckSolution attribute)

 	(business.station.definitions.StationDesignSolution attribute)

 	ELECTRIC_ENERGY_UNITS (in module business.helpers.units)

 	ElectricCheck (class in business.station.arrangements.check)

 	ElectricCheckAlgorithmsMixin (class in business.station.solvers.check)

 	ElectricDesign (class in business.station.arrangements.design)

 	ElectricDesignAlgorithmsMixin (class in business.station.solvers.design)

 	ElectriclessCheck (class in business.station.arrangements.check)

 	ElectriclessCheckAlgorithmsMixin (class in business.station.solvers.check)

 	ElectriclessDesign (class in business.station.arrangements.design)

 	ElectriclessDesignAlgorithmsMixin (class in business.station.solvers.design)

 	ElectriclessMixin (class in business.station.solvers.base)

 	ElectriclessPlotMixin (class in business.station.plots)

 	ElectriclessReportMixin (class in business.station.reports)

 	ElectricMixin (class in business.station.solvers.base)

 	ElectricPlotMixin (class in business.station.plots)

 	ElectricReportMixin (class in business.station.reports)

 	elevation (business.commons.energy.EnergyProfilePoint attribute), [1]

 	elevation_at_tail_end() (business.commons.energy.ElevationProfile property)

 	ElevationProfile (class in business.commons.energy)

 	ElevationProfilePoint (class in business.commons.energy)

 	energy_at_head_point (business.gravity.trunking.setters.TrunkDesignSettersMixin attribute)

 	energy_at_head_point() (business.commons.definitions.TraversalSolution property)

 	(business.gravity.trunking.setters.TrunkDesignSettersMixin property)

 	(business.station.mixins.traversals.SgrMockSimplexSoilStretchMixin property)

 	energy_at_tail_point (business.gravity.trunking.setters.TrunkDesignSettersMixin attribute)

 	energy_at_tail_point() (business.commons.definitions.TraversalSolution property)

 	(business.gravity.trunking.setters.TrunkDesignSettersMixin property)

 	(business.station.mixins.traversals.SgrMockSimplexSoilStretchMixin property)

 	
 	EnergyDesignMixin (class in business.gravity.mixins.energy)

 	EnergyProfile (class in business.commons.energy)

 	EnergyProfilePoint (class in business.commons.energy)

 	Engine (class in business.manufacturers.components.engines)

 	engine() (business.station.arrangements.check.ElectriclessCheck property)

 	ENGINE_MAX_ADVISABLE_LOAD (in module business.manufacturers.constants)

 	ENGINE_MIN_ADVISABLE_LOAD (in module business.manufacturers.constants)

 	engine_power_curve_as_matplotlib() (business.station.definitions.StationCheckSolution property)

 	EngineCheck (class in business.manufacturers.components.engines)

 	EngineCheckLoader (class in business.manufacturers.readers)

 	EngineCheckPool (class in business.manufacturers.catalogs.engines)

 	EngineDesign (class in business.manufacturers.components.engines)

 	EngineDesignLoader (class in business.manufacturers.readers)

 	EngineDesignPool (class in business.manufacturers.catalogs.engines)

 	EngineLoader (class in business.manufacturers.readers)

 	EngineOverload

 	EngineOverRevving

 	EnginePool (class in business.manufacturers.catalogs.engines)

 	EngineRatingMixin (class in business.manufacturers.components.engines)

 	EngineUnderRevving

 	EngineWorkingConditions (class in business.helpers.definitions)

 	errors (business.commons.definitions.CheckCalculationsReport attribute)

 	(business.commons.definitions.DesignCalculationsReport attribute)

 	(business.gravity.views.definitions.ZoneDesignReport attribute)

 	errors() (business.commons.definitions.DesignSolution property)

 	eval_distance_between_two_points() (in module core.utils.topography)

 	EXCESSIVELY_CONCAVE_HILLSLOPE (core.enumerations.linprog.SimplexFailuresEnumerator attribute)

 	EXCESSIVELY_CONVEX_HILLSLOPE (core.enumerations.linprog.SimplexFailuresEnumerator attribute)

F

 	
 	FailedSubtreeDesign

 	FeederBaseMixin (class in business.station.feeder)

 	FeederCheck (class in business.station.feeder)

 	FeederClimbMixin (class in business.station.climb)

 	FeederDesign (class in business.station.feeder)

 	FeederElevationProfile (class in business.station.profile)

 	FeederSegment (class in business.station.definitions)

 	FeederSoilsMixin (class in business.station.soils)

 	filter_accomplished_solutions() (in module business.gravity.trunking.traversals)

 	filter_those_having_suitable_speed() (business.manufacturers.catalogs.pipes.BasePipePool method)

 	(business.manufacturers.catalogs.pipes.BasePipePool static method)

 	FLAT_SLOPE (core.enumerations.linprog.SimplexFailuresEnumerator attribute)

 	FlatSlope

 	
 	FLOW_EXPONENT (in module business.commons.constants)

 	flow_speed (business.manufacturers.components.pipes.Pipe attribute)

 	flow_speed() (business.manufacturers.components.pipes.PipeDesign property)

 	FlowDesignMixin (class in business.gravity.mixins.flows)

 	FlowVsEnergyCurve (class in business.helpers.definitions)

 	FlowVsEnergyPoint (class in business.helpers.definitions)

 	ForceMainDemandDataMissing

 	fore_high (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	fore_low (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	fore_mid (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	friction_per_unit_pathlength (business.manufacturers.components.pipes.Pipe attribute)

 	friction_per_unit_pathlength() (business.manufacturers.components.pipes.Pipe property)

 	FUTURE_round_the_water_flow() (in module business.manufacturers.components.pipes)

G

 	
 	generate_equidistant_points() (in module core.utils.topography)

 	get_area_geographical_name() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_barycenter_of_coordinates() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_burned_off_energy() (business.station.riser.RiserDesign property)

 	get_candidate_conduits_list() (business.station.climb.FeederClimbMixin property)

 	get_characteristic_curve (business.manufacturers.components.submersibles.SubmersiblePump attribute)

 	get_characteristic_curve() (business.manufacturers.components.submersibles.SubmersiblePump property)

 	get_cost() (business.commons.mixins.cost.PipesCostMixin property)

 	get_daily_demands_dict() (in module uxwizard.views.gravity.design)

 	(in module uxwizard.views.station.design)

 	get_daily_work_hours() (business.station.feeder.FeederDesign property)

 	get_delta_elevation_wellhead_to_tank() (business.station.feeder.FeederBaseMixin property)

 	get_drawdowns_list() (in module uxwizard.views.station.base)

 	get_duty() (business.manufacturers.components.submersibles.SubmersiblePumpDesign method)

 	get_duty_at_current_water_flow (business.manufacturers.components.submersibles.SubmersiblePump attribute)

 	get_duty_at_current_water_flow() (business.manufacturers.components.submersibles.SubmersiblePump property)

 	get_duty_point() (business.manufacturers.components.progressives.Column method)

 	(business.manufacturers.components.progressives.Column property)

 	get_duty_rpm() (business.manufacturers.components.progressives.BodyDesign property)

 	(business.manufacturers.components.progressives.BodyHydraulicRatingMixin method)

 	get_dwl_curve_as_matplotlib() (business.groundwater.plots.PerformancePlotMixin method)

 	(business.groundwater.plots.PerformancePlotMixin property)

 	get_electric_power() (business.manufacturers.components.submersibles.SubmersiblePumpDesign property)

 	get_elevation_at_given_downrange() (business.commons.mixins.interpolation.ProfileInterpolationMixin method)

 	get_elevation_profile_from_tail_until_downrange() (business.station.soils.SoilStretch method)

 	get_flow_range() (business.groundwater.boreholes.BaseBorehole property)

 	get_guessed_cost() (business.station.riser.RiserDesign property)

 	get_head_point_elevation() (business.station.soils.SoilStretch property)

 	get_headloss_at_sample_flow() (business.helpers.definitions.PipedSegmentCheck method)

 	(business.station.feeder.FeederCheck method)

 	(business.station.riser.RiserCheck method)

 	get_headloss_per_meter_at_sample_flow() (business.manufacturers.components.pipes.Pipe method)

 	get_headmost_intersection_with() (business.commons.energy.BaseEnergyProfileMixin method), [1]

 	get_headmost_soil_stretch() (business.station.feeder.FeederDesign property)

 	get_hgl_profile() (business.commons.watermains.WatermainCheck property)

 	get_humanized_pipe_name() (business.helpers.definitions.PipedSegmentCheck method)

 	get_hydraulic_energy() (business.manufacturers.components.submersibles.SubmersiblePumpDesign property)

 	get_hydraulic_energy_at_wellhead() (business.station.solvers.check.ElectricCheckAlgorithmsMixin property)

 	get_hydraulic_energy_excluding_riser_friction() (business.station.solvers.base.StationMixin property)

 	get_hydraulic_friction (business.commons.watermains.Watermain attribute)

 	get_hydraulic_friction() (business.station.feeder.FeederBaseMixin property)

 	get_hydraulic_friction_per_unit_waterflow() (business.gravity.trunks.TrunkCheck property)

 	get_instances (business.manufacturers.readers.BaseComponentLoader attribute)

 	get_instances() (business.manufacturers.readers.BaseComponentLoader property)

 	get_intake_elevation() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_interpolated_downrange_at_pathlength() (business.commons.mixins.interpolation.ProfileInterpolationMixin method)

 	get_interpolated_elevation_at_pathlength() (business.commons.mixins.interpolation.ProfileInterpolationMixin method)

 	get_interpolated_pathlength_at_downrange() (business.commons.mixins.interpolation.ProfileInterpolationMixin method)

 	get_intersection_with() (business.helpers.definitions.FlowVsEnergyCurve method)

 	get_mapquest_formatted_string() (in module core.services.mapquest)

 	get_mapquest_json_response() (in module core.utils.topography)

 	get_max_design_flow_range() (business.station.plots.PlotAdaptersMixin property)

 	
 	get_min_design_flow_range() (business.station.plots.PlotAdaptersMixin property)

 	get_my_cost() (business.gravity.coroutines.CurrentSimplexesList property)

 	get_my_water_demand_as_steady_flow() (business.gravity.trunks.TrunkDesign property)

 	(business.station.feeder.FeederDesign property)

 	get_open_channel_hgl_profile() (business.gravity.trunks.AtmosphericTrunkDesign property)

 	get_open_flow_pipe_segments() (business.commons.mixins.linear.SingleLinprogStretchMixin method)

 	(business.commons.mixins.linear.SingleLinprogStretchMixin property)

 	get_optimal_duty() (business.manufacturers.components.engines.EngineDesign property)

 	(business.manufacturers.components.engines.EngineRatingMixin method)

 	get_pathlength_inbetween_downranges() (business.station.soils.SoilStretch method)

 	get_pathway_points_list() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_pathways_list() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_persistence_host() (in module business.manufacturers.services)

 	get_pipework_dict() (in module uxwizard.views.gravity.check)

 	(in module uxwizard.views.station.check)

 	get_point_at_given_pathlength() (business.station.mixins.interpolation.PointFactoryMixin method)

 	get_powertrain_electric() (in module uxwizard.views.station.base)

 	get_powertrain_electricless() (in module uxwizard.views.station.base)

 	get_pressure_limit_profile() (business.commons.energy.ElevationProfile method), [1]

 	get_pump_depth_down_the_hole() (business.groundwater.boreholes.BoreholeCheck property)

 	(business.groundwater.boreholes.BoreholeDesign property)

 	get_rated_working_pressure() (business.station.soils.SoilStretch method)

 	get_ratings_to_plot() (business.commons.watermains.WatermainMixin method)

 	(business.commons.watermains.WatermainMixin property)

 	get_section_from_pathlength() (business.station.profile.FeederElevationProfile method)

 	get_section_inbetween_downranges() (business.commons.energy.BaseEnergyProfileMixin method), [1]

 	get_section_inbetween_pathlengths() (business.station.profile.FeederElevationProfile method)

 	get_server_settings() (in module business.manufacturers.services)

 	get_sites_list() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_step_0_context() (in module uxwizard.views.gravity.base)

 	(in module uxwizard.views.station.base)

 	get_suitable_pipes_list() (business.manufacturers.catalogs.pipes.BasePipePool method)

 	(business.manufacturers.catalogs.pipes.BasePipePool property)

 	(business.manufacturers.catalogs.pipes.RiserPipePool property)

 	get_suitable_pump_list() (business.manufacturers.catalogs.submersibles.SubmersiblePoolDesign property)

 	get_suitable_rated_working_pressure() (business.manufacturers.catalogs.pipes.BasePipePool method), [1]

 	get_suitable_rated_working_pressure_index() (business.manufacturers.catalogs.pipes.BasePipePool method), [1]

 	get_tailmost_intersection_with() (business.commons.energy.BaseEnergyProfileMixin method), [1]

 	get_traversal_solution() (business.gravity.trunking.traversals.AtmosphericTraversalTrunkMixin property)

 	(business.gravity.trunking.traversals.TraversalsTrunkDesignMixin method)

 	(business.gravity.trunking.traversals.TraversalsTrunkDesignMixin property)

 	get_unique_intersection_with() (business.commons.energy.BaseEnergyProfileMixin method), [1]

 	get_ux_context() (business.gravity.views.reports.GravityCheckReportMixin property)

 	(business.gravity.views.reports.GravityDesignReportMixin property)

 	get_valid_pressure_pathlength() (business.station.climb.ClimbStretch property)

 	(business.station.soils.SoilStretch method)

 	GravityCheck (class in business.gravity.arrangements.check)

 	GravityCheckReportMixin (class in business.gravity.views.reports)

 	GravityCheckWizardTest (class in uxwizard.tests.acceptance)

 	GravityDesign (class in business.gravity.arrangements.design)

 	GravityDesign.DesignSolutionDetails (class in business.gravity.arrangements.design)

 	GravityDesignMixin (class in business.gravity.solvers.design)

 	GravityDesignReportMixin (class in business.gravity.views.reports)

H

 	
 	hgl_is_pressure_compliant() (business.gravity.stretching.pressure.PressureStretchMixin property)

 	hgl_is_vapour_compliant() (business.gravity.mixins.airlock.OpenEndsTrunkStretchAirlockMixin method)

 	(business.gravity.mixins.airlock.OpenEndsTrunkStretchAirlockMixin property)

 	hgl_lies_above_elevation_profile() (business.gravity.stretches.AtmosphericSubtrunk property)

 	(business.gravity.stretching.pressure.PressureStretchMixin property)

 	hgl_prevents_air_locks() (business.gravity.mixins.airlock.OpenEndsTrunkStretchAirlockMixin method)

 	(business.gravity.mixins.airlock.OpenEndsTrunkStretchAirlockMixin property)

 	
 	hourly_diesel_consumption() (business.manufacturers.components.engines.EngineCheck property)

 	hydraulic_design_constraint() (business.manufacturers.components.progressives.Combination method)

 	hydraulic_energy (business.helpers.definitions.FlowVsEnergyPoint attribute), [1]

 	hydraulic_hardware_apis (in module business.manufacturers.services)

 	hydraulic_hardware_patch_attempt() (in module business.manufacturers.readers)

I

 	
 	ImproperlyConfiguredBorehole

 	ImproperlyConfiguredPumpingStation

 	ImproperlyConfiguredTrunk

 	ImproperlyConfiguredWaterSystem

 	init_wizard_session() (in module uxwizard.views.gravity.check)

 	(in module uxwizard.views.gravity.design)

 	(in module uxwizard.views.station.check)

 	(in module uxwizard.views.station.design)

 	InitLogger (class in business.commons.loggers)

 	InitLoggerMixin (class in business.commons.loggers)

 	
 	insert() (business.helpers.utils.TypedList method)

 	intersects_with() (business.commons.energy.BaseEnergyProfileMixin method), [1]

 	investment_cost() (business.commons.definitions.DesignSolution property)

 	is_failed() (business.commons.definitions.TraversalSolution property)

 	(business.gravity.coroutines.CurrentSimplexesList property)

 	(business.station.coroutines.CoroutineNode static method)

 	(business.station.coroutines.CoroutineReturn property)

 	(business.station.coroutines.CoroutineRoot static method)

 	is_suitable_for_given_flow (business.manufacturers.components.submersibles.SubmersiblePump attribute)

 	is_suitable_for_given_flow() (business.manufacturers.components.submersibles.SubmersiblePumpDesign property)

L

 	
 	latitude() (core.utils.topography.PointCoordinates property)

 	lazyprop() (in module business.helpers.utils)

 	LeafNodeDemandDataMissing

 	LevelrodFileAdapter (class in business.commons.adapters)

 	LevelrodFileAdapter.TurningPointReading (class in business.commons.adapters)

 	linear_solver() (business.commons.mixins.linear.SingleLinprogStretchMixin method)

 	(business.commons.mixins.linear.SingleLinprogStretchMixin property)

 	
 	LinprogNumericalIssue

 	list_suitable_pumps (business.manufacturers.catalogs.submersibles.SubmersiblePool attribute)

 	load() (business.manufacturers.components.engines.EngineCheck property)

 	logger_factory() (in module business.loggers)

 	LoggerMixin (class in business.commons.loggers)

 	longitude() (core.utils.topography.PointCoordinates property)

 	lowest_available_rated_working_pressure() (business.manufacturers.catalogs.pipes.BasePipePool method)

 	(business.manufacturers.catalogs.pipes.BasePipePool property)

M

 	
 	makes (business.manufacturers.catalogs.engines.EnginePool attribute)

 	(business.manufacturers.catalogs.progressives.BodyPool attribute)

 	(business.manufacturers.catalogs.progressives.ColumnPool attribute)

 	(business.manufacturers.catalogs.progressives.DriveheadPool attribute)

 	(business.manufacturers.catalogs.progressives.ShaftPool attribute)

 	MapQuestApiAdapter (class in business.commons.adapters)

 	MapquestStatusCodeError

 	MAX_ADVISABLE_FLOW_SPEED (in module business.manufacturers.constants)

 	MAX_ADVISABLE_VEE_BELT_TRANSMISSION_RATIO (in module business.manufacturers.constants)

 	merger() (business.gravity.coroutines.CoroutineLeaf method), [1]

 	(business.gravity.coroutines.CoroutineNode method), [1]

 	(business.gravity.coroutines.CoroutineRoot method), [1]

 	(business.station.coroutines.CoroutineLeaf method)

 	(business.station.coroutines.CoroutineNode method)

 	(business.station.coroutines.CoroutineRoot method)

 	MIN_ADVISABLE_FLOW_SPEED (in module business.manufacturers.constants)

 	MIN_CLUTCH_ENGAGEMENT_RPM_MAGNITUDE (in module business.manufacturers.constants)

 	MIN_TO_MAX_WIGGLE_DEMAND_PERCENT (in module business.commons.constants)

 	misses() (business.helpers.definitions.FlowVsEnergyCurve method)

 	mock_pick() (business.manufacturers.catalogs.engines.EnginePool property)

 	(business.manufacturers.catalogs.progressives.CombinationPool property)

 	(business.manufacturers.catalogs.submersibles.SubmersiblePool property)

 	mock_temporarily_with_single_simplex() (in module business.station.mixins.traversals)

 	mocked_persistence_host() (in module business.manufacturers.services)

 	
 module

 	business

 	business.commons

 	business.commons.adapters

 	business.commons.constants

 	business.commons.coroutines

 	business.commons.defaults

 	business.commons.definitions

 	business.commons.energy

 	business.commons.exceptions

 	business.commons.loggers

 	business.commons.mixins

 	business.commons.mixins.cost

 	business.commons.mixins.interpolation

 	business.commons.mixins.linear

 	business.commons.TODO_settings

 	business.commons.traversals

 	business.commons.watermains

 	business.gravity

 	business.gravity.arrangements

 	business.gravity.arrangements.base

 	business.gravity.arrangements.check

 	business.gravity.arrangements.design

 	business.gravity.constants

 	business.gravity.coroutines

 	business.gravity.exceptions

 	business.gravity.mixins

 	business.gravity.mixins.airlock

 	business.gravity.mixins.crawl

 	business.gravity.mixins.energy

 	business.gravity.mixins.flows

 	business.gravity.mixins.topology

 	business.gravity.mixins.trimming

 	business.gravity.mixins.zoning

 	business.gravity.solvers

 	business.gravity.solvers.check

 	business.gravity.solvers.design

 	business.gravity.stretches

 	business.gravity.stretching

 	business.gravity.stretching.crawl

 	business.gravity.stretching.linear

 	business.gravity.stretching.pressure

 	business.gravity.stretching.setters

 	business.gravity.trunking

 	business.gravity.trunking.setters

 	business.gravity.trunking.traversals

 	business.gravity.trunks

 	business.gravity.views

 	business.gravity.views.definitions

 	business.gravity.views.plots

 	business.gravity.views.reports

 	business.groundwater

 	business.groundwater.boreholes

 	business.groundwater.constants

 	business.groundwater.exceptions

 	business.groundwater.plots

 	business.groundwater.units

 	business.helpers

 	business.helpers.definitions

 	business.helpers.guards

 	business.helpers.roundings

 	business.helpers.units

 	business.helpers.utils

 	business.loggers

 	business.manufacturers

 	business.manufacturers.catalogs

 	business.manufacturers.catalogs.bases

 	business.manufacturers.catalogs.engines

 	business.manufacturers.catalogs.pipes

 	business.manufacturers.catalogs.progressives

 	business.manufacturers.catalogs.submersibles

 	business.manufacturers.components

 	business.manufacturers.components.engines

 	business.manufacturers.components.pipes

 	business.manufacturers.components.progressives

 	business.manufacturers.components.submersibles

 	business.manufacturers.constants

 	business.manufacturers.exceptions

 	business.manufacturers.exceptions.base

 	business.manufacturers.exceptions.engines

 	business.manufacturers.exceptions.pipes

 	business.manufacturers.exceptions.progressives

 	business.manufacturers.exceptions.submersibles

 	business.manufacturers.readers

 	business.manufacturers.services

 	business.manufacturers.utils

 	business.station

 	business.station.adapters

 	business.station.arrangements

 	business.station.arrangements.base

 	business.station.arrangements.check

 	business.station.arrangements.design

 	business.station.climb

 	business.station.constants

 	business.station.coroutines

 	business.station.defaults

 	business.station.definitions

 	business.station.exceptions

 	business.station.feeder

 	business.station.initkwargs

 	business.station.mixins

 	business.station.mixins.interpolation

 	business.station.mixins.traversals

 	business.station.plots

 	business.station.profile

 	business.station.reports

 	business.station.riser

 	business.station.soils

 	business.station.solvers

 	business.station.solvers.base

 	business.station.solvers.check

 	business.station.solvers.design

 	business.tests

 	business.tests.fixtures

 	core

 	core.constants

 	core.constants.arrangements

 	core.constants.civil

 	core.constants.demand

 	core.constants.design

 	core.constants.dirs

 	core.constants.groundwater

 	core.constants.pipeworks

 	core.constants.soils

 	core.constants.topography

 	core.constants.topology

 	core.constants.treatment

 	core.constants.trunks

 	core.enumerations

 	core.enumerations.linprog

 	core.services

 	core.services.caches

 	core.services.mapquest

 	core.settings

 	core.settings.csv

 	core.settings.mapquest

 	core.settings.persistence

 	core.settings.redis

 	core.utils

 	core.utils.patterns

 	core.utils.topography

 	uxwizard

 	uxwizard.apps

 	uxwizard.tests

 	uxwizard.tests.acceptance

 	uxwizard.tests.app

 	uxwizard.tests.models

 	uxwizard.tests.utils

 	uxwizard.tests.views

 	uxwizard.urls

 	uxwizard.urls.gravity

 	uxwizard.urls.gravity.base

 	uxwizard.urls.gravity.check

 	uxwizard.urls.gravity.design

 	uxwizard.urls.splash

 	uxwizard.urls.station

 	uxwizard.urls.station.base

 	uxwizard.urls.station.check

 	uxwizard.urls.station.design

 	uxwizard.views

 	uxwizard.views.gravity

 	uxwizard.views.gravity.base

 	uxwizard.views.gravity.check

 	uxwizard.views.gravity.design

 	uxwizard.views.splash

 	uxwizard.views.station

 	uxwizard.views.station.base

 	uxwizard.views.station.check

 	uxwizard.views.station.design

 	
 	MonostateMixin (class in business.manufacturers.utils)

N

 	
 	name (business.gravity.coroutines.CoroutineLeaf attribute)

 	(business.gravity.coroutines.CoroutineNode attribute)

 	(business.gravity.coroutines.CoroutineRoot attribute)

 	(business.station.coroutines.CoroutineLeaf attribute)

 	(business.station.coroutines.CoroutineNode attribute)

 	(business.station.coroutines.CoroutineRoot attribute)

 	(uxwizard.apps.UxwizardConfig attribute)

 	name() (business.commons.watermains.WatermainMixin property)

 	next_coro_object (business.station.coroutines.CoroutineNode attribute)

 	(business.station.coroutines.CoroutineRoot attribute)

 	
 	no_piped_segments (in module business.commons)

 	non_fractional_burned_energy() (business.helpers.definitions.PipedSegmentCheck property)

 	non_fractional_friction_per_unit_pathlength() (business.manufacturers.components.pipes.Pipe property)

 	NonExistentDutyPoint

 	NonExistentIntersection

 	NonsensicalDrawdownData

 	NonsensicalLandElevationData

 	NonsensicalSoilSectionsData

 	NoPipedSegments (class in business.commons.definitions)

 	NoSuitableRatedWorkingPressureAvailableFromCatalog

 	NotImplementedInRuralwater

O

 	
 	OpenChannelFlow

 	OpenEndsTrunkEdgeCase

 	
 	OpenEndsTrunkStretchAirlockMixin (class in business.gravity.mixins.airlock)

 	optimized_solution (business.commons.definitions.DesignCalculationsReport attribute)

 	(business.gravity.views.definitions.ZoneDesignReport attribute)

P

 	
 	pathlength (business.commons.energy.ElevationProfilePoint attribute), [1]

 	(business.commons.watermains.Watermain attribute)

 	pathlength() (business.commons.energy.BaseEnergyProfileMixin method)

 	(business.commons.energy.BaseEnergyProfileMixin property)

 	(business.commons.watermains.WatermainMixin property)

 	(business.gravity.stretches.Subtrunk property)

 	(business.helpers.definitions.PipedSegment method)

 	(business.helpers.definitions.PipedSegment property)

 	(business.station.climb.ClimbingSegment property)

 	(business.station.mixins.traversals.SgrMockSimplexSoilStretchMixin property)

 	(business.station.profile.SoilStretchElevationProfile property)

 	(business.station.riser.RiserDesign property)

 	penalty() (business.commons.definitions.TraversalSolution property)

 	(business.helpers.definitions.PipedSegment method)

 	(business.station.definitions.FeederSegment property)

 	PerformancePlotMixin (class in business.groundwater.plots)

 	PERSISTENCE_HOST (in module business.manufacturers.services)

 	pick_engine_by_min_diesel_consumption() (business.manufacturers.catalogs.engines.EngineDesignPool property)

 	pick_least_power_combination() (business.manufacturers.catalogs.progressives.CombinationDesignPool property)

 	pick_one_pipe_by_optimal_flow_speed() (business.manufacturers.catalogs.pipes.ShortFeederSelectionMixin property)

 	pick_random_pipe() (business.manufacturers.catalogs.pipes.BasePipePool property)

 	Pipe (class in business.manufacturers.components.pipes)

 	PipeCheck (class in business.manufacturers.components.pipes)

 	PipeCheckLoader (class in business.manufacturers.readers)

 	PipeCheckPool (class in business.manufacturers.catalogs.pipes)

 	piped_segment (business.commons.definitions.SimplexFailureList attribute)

 	piped_segments (business.commons.watermains.WatermainDesign attribute)

 	piped_segments() (business.commons.definitions.TraversalSolution property)

 	(business.commons.watermains.WatermainCheck property)

 	(business.commons.watermains.WatermainDesign property)

 	(business.station.definitions.FeederSegment property)

 	PipeDesign (class in business.manufacturers.components.pipes)

 	PipeDesignLoader (class in business.manufacturers.readers)

 	PipeDesignPool (class in business.manufacturers.catalogs.pipes)

 	PipeDesignPoolMixin (class in business.commons.traversals)

 	PipedSegment (class in business.helpers.definitions)

 	PipedSegmentCheck (class in business.helpers.definitions)

 	PipedSegmentDesign (class in business.helpers.definitions)

 	PipeLoader (class in business.manufacturers.readers)

 	PipePool (class in business.manufacturers.catalogs.pipes)

 	pipes_in_pair() (business.gravity.stretching.setters.SettersStretchMixin property)

 	PipesCostMixin (class in business.commons.mixins.cost)

 	PipeWorkingConditions (class in business.helpers.definitions)

 	
 	plot_as_svg() (business.commons.watermains.WatermainMixin property)

 	plot_check_problem_solution() (business.station.plots.ElectriclessPlotMixin property)

 	(business.station.plots.ElectricPlotMixin method)

 	plot_design_problem_solution() (business.station.plots.ElectriclessPlotMixin property)

 	(business.station.plots.ElectricPlotMixin property)

 	plot_recursive_climb() (business.station.plots.PlotClimbStretchMixin method)

 	plot_something() (business.station.plots.CheckProblemPlots method)

 	PlotAdaptersMixin (class in business.station.plots)

 	PlotBaseEnergyProfileMixin (class in business.commons.energy)

 	PlotClimbStretchMixin (class in business.station.plots)

 	PlotCombinationsMixin (class in business.manufacturers.catalogs.progressives)

 	PlotGravityMixin (class in business.gravity.views.plots)

 	plots_directory (business.station.plots.PlotClimbStretchMixin attribute)

 	plots_files_extension (business.station.plots.PlotClimbStretchMixin attribute)

 	PlotsMixin (class in business.manufacturers.components.progressives)

 	Point (business.manufacturers.components.engines.EngineRatingMixin attribute)

 	Point__doc__ (business.manufacturers.components.progressives.BodyMechanicalRatingMixin attribute)

 	PointCoordinates (class in core.utils.topography)

 	PointFactoryMixin (class in business.commons.mixins.interpolation)

 	(class in business.station.mixins.interpolation)

 	population_growth_rate (in module business.commons.defaults)

 	POWER_UNITS (in module business.helpers.units)

 	PREFERRED_FLOW_SPEED (in module business.manufacturers.constants)

 	PressureLimitsExceeded

 	PressureStretchMixin (class in business.gravity.stretching.pressure)

 	profile_elevation_at_head_end (business.commons.watermains.Watermain attribute)

 	profile_elevation_at_head_end() (business.commons.watermains.WatermainMixin property)

 	profile_elevation_at_tail_end (business.commons.watermains.Watermain attribute)

 	profile_elevation_at_tail_end() (business.commons.watermains.WatermainMixin property)

 	ProfileInterpolationMixin (class in business.commons.mixins.interpolation)

 	ProgressiveBodyCheckLoader (class in business.manufacturers.readers)

 	ProgressiveBodyDesignLoader (class in business.manufacturers.readers)

 	ProgressiveBodyLoader (class in business.manufacturers.readers)

 	PULLEY_DIAMETER_UNITS (in module business.helpers.units)

 	PUMP_BODY_VERTICAL_ENCUMBRANCE (in module business.helpers.units)

 	pump_depth (business.helpers.definitions.RiserAssemblyWorkingConditions attribute)

 	pump_depth() (business.helpers.definitions.RiserAssemblyWorkingConditions property)

 	(business.manufacturers.catalogs.progressives.CombinationDesignPool property)

 	(business.manufacturers.components.progressives.ColumnCheck property)

 	(business.manufacturers.components.progressives.CombinationCheck property)

 	(business.station.arrangements.check.ElectriclessCheck property)

 	PumpOverRevving

 	PumpRunningDry

Q

 	
 	query_api() (in module core.services.caches)

 	
 	query_api_immediately() (in module core.services.caches)

 	query_api_or_read_cache() (in module core.services.caches)

R

 	
 	RANDOM_SEARCH_RANGE_PAD (in module business.gravity.constants)

 	(in module business.station.constants)

 	RANDOM_SEARCH_RANGE_STEP (in module business.station.constants)

 	rated_working_pressure (business.helpers.definitions.PipeWorkingConditions attribute)

 	rated_working_pressure() (business.helpers.definitions.PipeWorkingConditions property)

 	RatedPoint (business.manufacturers.components.progressives.BodyHydraulicRatingMixin attribute), [1]

 	(business.manufacturers.components.progressives.BodyMechanicalRatingMixin attribute), [1]

 	(business.manufacturers.components.progressives.ColumnRatingMixin attribute)

 	RatingPoint (business.manufacturers.components.submersibles.SubmersiblePump attribute), [1]

 	recursive_climb() (business.station.climb.ClimbStretch property)

 	recursive_linear_solver() (business.gravity.stretches.Subtrunk method)

 	(business.gravity.stretches.Subtrunk property)

 	redis() (core.services.caches.RedisClient property)

 	RedisClient (class in core.services.caches)

 	remarks (business.commons.adapters.LevelrodFileAdapter.TurningPointReading attribute)

 	(business.commons.energy.EnergyProfilePoint attribute), [1]

 	required_power() (business.manufacturers.catalogs.engines.EngineDesignPool property)

 	(business.manufacturers.components.engines.EngineDesign property)

 	required_power_is_suitable() (business.manufacturers.components.engines.EngineDesign property)

 	(business.manufacturers.components.engines.EngineRatingMixin method)

 	resistive_curve() (business.manufacturers.components.progressives.Body method)

 	(business.manufacturers.components.progressives.BodyCheck property)

 	riser (business.station.coroutines.CoroutineRoot attribute)

 	RiserAssemblyWorkingConditions (class in business.helpers.definitions)

 	RiserCheck (class in business.station.riser)

 	
 	RiserDesign (class in business.station.riser)

 	RiserPipe (class in business.manufacturers.components.pipes)

 	RiserPipeCheck (class in business.manufacturers.components.pipes)

 	RiserPipeCheckLoader (class in business.manufacturers.readers)

 	RiserPipeCheckPool (class in business.manufacturers.catalogs.pipes)

 	RiserPipeDesign (class in business.manufacturers.components.pipes)

 	RiserPipeDesignLoader (class in business.manufacturers.readers)

 	RiserPipeDesignPool (class in business.manufacturers.catalogs.pipes)

 	RiserPipePool (class in business.manufacturers.catalogs.pipes)

 	roba() (business.station.climb.ClimbStretch method)

 	round_the_water_flow() (in module business.manufacturers.components.pipes)

 	rpm (business.helpers.definitions.EngineWorkingConditions attribute)

 	(business.manufacturers.components.engines.Clutch attribute)

 	rpm() (business.helpers.definitions.EngineWorkingConditions property)

 	(business.manufacturers.components.progressives.Body method)

 	(business.manufacturers.components.progressives.BodyCheck property)

 	(business.manufacturers.components.progressives.BodyDesign property)

 	(business.manufacturers.components.progressives.ColumnCheck property)

 	(business.manufacturers.components.progressives.CombinationCheck property)

 	(business.manufacturers.components.progressives.CombinationDesign property)

 	rpm_range (business.manufacturers.components.engines.EngineRatingMixin attribute)

 	rpm_range() (business.manufacturers.components.engines.EngineCheck property)

 	RPM_UNITS (in module business.helpers.units)

 	running_cost() (business.commons.definitions.DesignSolution property)

 	RuralwaterException

S

 	
 	segments_in_pair() (business.gravity.stretching.setters.SettersStretchMixin property)

 	send() (business.gravity.coroutines.CoroutineLeaf method)

 	(business.gravity.coroutines.CoroutineNode method)

 	(business.station.coroutines.CoroutineLeaf method)

 	(business.station.coroutines.CoroutineNode method)

 	set_hydraulic_energy_at_submersible_outlet() (business.station.coroutines.CoroutineRoot method)

 	SettersStretchMixin (class in business.gravity.stretching.setters)

 	setUpClass() (uxwizard.tests.acceptance.GravityCheckWizardTest class method)

 	SgrMockSimplexSoilStretchMixin (class in business.station.mixins.traversals)

 	SgrTraversalSoilStretchMixin (class in business.station.mixins.traversals)

 	Shaft (class in business.manufacturers.components.progressives)

 	ShaftCheck (class in business.manufacturers.components.progressives)

 	ShaftCheckLoader (class in business.manufacturers.readers)

 	ShaftCheckPool (class in business.manufacturers.catalogs.progressives)

 	ShaftDesign (class in business.manufacturers.components.progressives)

 	ShaftDesignLoader (class in business.manufacturers.readers)

 	ShaftDesignPool (class in business.manufacturers.catalogs.progressives)

 	ShaftLoader (class in business.manufacturers.readers)

 	ShaftPool (class in business.manufacturers.catalogs.progressives)

 	ShortFeederDesignMixin (class in business.station.feeder)

 	ShortFeederSelectionMixin (class in business.manufacturers.catalogs.pipes)

 	simplex_failure_list (in module business.commons)

 	SimplexFailureList (class in business.commons.definitions)

 	SimplexFailuresEnumerator (class in core.enumerations.linprog)

 	SingleLinprogStretchMixin (class in business.commons.mixins.linear)

 	Singleton (class in core.utils.patterns)

 	SlopeOutsideFeasibleRange

 	soil_stretch (business.station.coroutines.CoroutineLeaf attribute)

 	(business.station.coroutines.CoroutineNode attribute)

 	SoilStretch (class in business.station.soils)

 	SoilStretchAdapter (class in business.station.adapters)

 	SoilStretchElevationProfile (class in business.station.profile)

 	solution (business.station.definitions.StationCheckSolution attribute)

 	(business.station.definitions.StationDesignSolution attribute)

 	solve_hydraulic_check_problem (business.station.solvers.check.ElectricCheckAlgorithmsMixin attribute)

 	(business.station.solvers.check.ElectriclessCheckAlgorithmsMixin attribute)

 	solve_hydraulic_check_problem() (business.gravity.arrangements.check.GravityCheck method)

 	(business.gravity.solvers.check.DendridicCheckMixin property)

 	(business.station.solvers.check.ElectricCheckAlgorithmsMixin property)

 	(business.station.solvers.check.ElectriclessCheckAlgorithmsMixin property)

 	
 	solve_hydraulic_design_problem (business.station.solvers.design.ElectricDesignAlgorithmsMixin attribute)

 	solve_hydraulic_design_problem() (business.gravity.arrangements.design.GravityDesign method)

 	(business.gravity.solvers.design.GravityDesignMixin method)

 	(business.station.solvers.design.ElectricDesignAlgorithmsMixin property)

 	(business.station.solvers.design.ElectriclessDesignAlgorithmsMixin property)

 	sorted_rated_working_pressures() (business.manufacturers.catalogs.pipes.BasePipePool method)

 	(business.manufacturers.catalogs.pipes.BasePipePool property)

 	splash_flatpage() (in module uxwizard.views.splash)

 	Station (class in business.station.arrangements.base)

 	StationCheck (class in business.station.arrangements.check)

 	StationCheckSolution (class in business.station.definitions)

 	StationCheckUnfeasible

 	StationDesign (class in business.station.arrangements.design)

 	StationDesignSolution (class in business.station.definitions)

 	StationDesignUnfeasible

 	StationMixin (class in business.station.solvers.base)

 	status() (business.commons.definitions.CheckSolution property)

 	SteelPipePool (class in business.manufacturers.catalogs.pipes)

 	STEEP_SLOPE (core.enumerations.linprog.SimplexFailuresEnumerator attribute)

 	SteepSlope

 	store() (business.commons.coroutines.CoroutineMinima method)

 	SubmersibleCheckLoader (class in business.manufacturers.readers)

 	SubmersibleDesignLoader (class in business.manufacturers.readers)

 	SubmersiblePool (class in business.manufacturers.catalogs.submersibles)

 	SubmersiblePoolCheck (class in business.manufacturers.catalogs.submersibles)

 	SubmersiblePoolDesign (class in business.manufacturers.catalogs.submersibles)

 	SubmersiblePump (class in business.manufacturers.components.submersibles)

 	SubmersiblePumpCheck (class in business.manufacturers.components.submersibles)

 	SubmersiblePumpDesign (class in business.manufacturers.components.submersibles)

 	SubmersibleWorkingConditions (class in business.helpers.definitions)

 	SubstretchMixin (class in business.gravity.stretches)

 	Subtrunk (class in business.gravity.stretches)

 	swap_piped_segments() (business.gravity.stretching.linear.SwapStretchMixin method)

 	(business.gravity.stretching.linear.SwapStretchMixin property)

 	SwapStretchMixin (class in business.gravity.stretching.linear)

 	SWL_UNIT (in module business.groundwater.units)

 	SwlDataMissing

T

 	
 	tearDownClass() (uxwizard.tests.acceptance.GravityCheckWizardTest class method)

 	test_can_show_splash() (uxwizard.tests.views.TestWizardsSplash method)

 	test_server_can_send_hydraulic_data() (uxwizard.tests.views.TestGravityCheckUxwizardForm method)

 	(uxwizard.tests.views.TestGravityDesignUxwizardForm method)

 	(uxwizard.tests.views.TestStationCheckUxwizardForm method)

 	(uxwizard.tests.views.TestStationDesignUxwizardForm method)

 	test_splash_html() (uxwizard.tests.views.TestWizardsSplash method)

 	test_wizard_is_shown_and_then() (uxwizard.tests.acceptance.GravityCheckWizardTest method)

 	TestGravityCheckUxwizardForm (class in uxwizard.tests.views)

 	TestGravityDesignUxwizardForm (class in uxwizard.tests.views)

 	TestStationCheckUxwizardForm (class in uxwizard.tests.views)

 	TestStationDesignUxwizardForm (class in uxwizard.tests.views)

 	TestWizardsSplash (class in uxwizard.tests.views)

 	translate_vertically() (business.commons.energy.BaseEnergyProfileMixin method), [1]

 	traversal_sgr() (business.station.mixins.traversals.SgrTraversalSoilStretchMixin method)

 	(business.station.mixins.traversals.SgrTraversalSoilStretchMixin property)

 	TraversalSolution (class in business.commons.definitions)

 	TraversalsTrunkDesignMixin (class in business.gravity.trunking.traversals)

 	
 	TraversalsTrunkOrStretchMixin (class in business.commons.traversals)

 	treatment (business.gravity.arrangements.design.GravityDesign.DesignSolutionDetails attribute)

 	treatment() (business.gravity.arrangements.design.GravityDesign.DesignSolutionDetails property)

 	trunk (business.gravity.coroutines.CoroutineLeaf attribute)

 	(business.gravity.coroutines.CoroutineNode attribute)

 	(business.gravity.coroutines.CoroutineRoot attribute)

 	trunk() (business.commons.definitions.TraversalSolution property)

 	TrunkCheck (class in business.gravity.trunks)

 	TrunkDesign (class in business.gravity.trunks)

 	TrunkDesignSettersMixin (class in business.gravity.trunking.setters)

 	trunks (business.gravity.arrangements.design.GravityDesign.DesignSolutionDetails attribute)

 	trunks() (business.gravity.arrangements.design.GravityDesign.DesignSolutionDetails property)

 	TrunkSolverStretchMixin (class in business.gravity.mixins.crawl)

 	TrunkStretchTrimmingMixin (class in business.gravity.mixins.trimming)

 	TrustedRawAltimetricFileAdapter (class in business.commons.adapters)

 	TypedList (class in business.helpers.utils)

 	TypedList.TypedListError

 	TypedSet (class in business.helpers.utils)

 	TypedSet.TypedSetError

U

 	
 	UnadvisableDuty

 	UnadvisableExploitation

 	UnadvisablePcdArrangement

 	UnadvisablePumpStationArrangement

 	UNEXPECTED_NUMERICAL_ISSUE (core.enumerations.linprog.SimplexFailuresEnumerator attribute)

 	UnforeseenMultipleIntersection

 	UntrustedRawAltimetricFileAdapter (class in business.commons.adapters)

 	up_elev (business.gravity.coroutines.CoroutineRoot attribute)

 	
 uxwizard

 	module

 	
 uxwizard.apps

 	module

 	
 uxwizard.tests

 	module

 	
 uxwizard.tests.acceptance

 	module

 	
 uxwizard.tests.app

 	module

 	
 uxwizard.tests.models

 	module

 	
 uxwizard.tests.utils

 	module

 	
 uxwizard.tests.views

 	module

 	
 uxwizard.urls

 	module

 	
 uxwizard.urls.gravity

 	module

 	
 uxwizard.urls.gravity.base

 	module

 	
 uxwizard.urls.gravity.check

 	module

 	
 	
 uxwizard.urls.gravity.design

 	module

 	
 uxwizard.urls.splash

 	module

 	
 uxwizard.urls.station

 	module

 	
 uxwizard.urls.station.base

 	module

 	
 uxwizard.urls.station.check

 	module

 	
 uxwizard.urls.station.design

 	module

 	
 uxwizard.views

 	module

 	
 uxwizard.views.gravity

 	module

 	
 uxwizard.views.gravity.base

 	module

 	
 uxwizard.views.gravity.check

 	module

 	
 uxwizard.views.gravity.design

 	module

 	
 uxwizard.views.splash

 	module

 	
 uxwizard.views.station

 	module

 	
 uxwizard.views.station.base

 	module

 	
 uxwizard.views.station.check

 	module

 	
 uxwizard.views.station.design

 	module

 	UxwizardConfig (class in uxwizard.apps)

V

 	
 	VEE_BELTS_TRANSMISSION_EFFICIENCY (in module business.manufacturers.constants)

W

 	
 	water_flow (business.helpers.definitions.FlowVsEnergyPoint attribute), [1]

 	(business.helpers.definitions.PipeWorkingConditions attribute)

 	(business.helpers.definitions.RiserAssemblyWorkingConditions attribute)

 	(business.helpers.definitions.SubmersibleWorkingConditions attribute)

 	(business.manufacturers.components.pipes.Pipe attribute)

 	(business.manufacturers.components.submersibles.SubmersiblePump attribute)

 	(business.station.solvers.base.StationMixin attribute)

 	water_flow() (business.commons.definitions.DesignSolution property)

 	(business.commons.definitions.TraversalSolution property)

 	(business.commons.watermains.WatermainMixin property)

 	(business.gravity.trunks.TrunkCheck property)

 	(business.groundwater.boreholes.BaseBorehole property)

 	(business.groundwater.boreholes.BoreholeCheck property)

 	(business.groundwater.boreholes.DwlVsFlowPoint property)

 	(business.helpers.definitions.PipedSegment method)

 	(business.helpers.definitions.PipedSegmentCheck property)

 	(business.helpers.definitions.PipedSegmentDesign property)

 	(business.helpers.definitions.PipeWorkingConditions property)

 	(business.helpers.definitions.RiserAssemblyWorkingConditions property)

 	(business.helpers.definitions.SubmersibleWorkingConditions property)

 	(business.manufacturers.catalogs.pipes.RiserPipeDesignPool property)

 	(business.manufacturers.catalogs.submersibles.SubmersiblePoolDesign property)

 	(business.manufacturers.components.pipes.PipeDesign property)

 	(business.manufacturers.components.progressives.BodyCheck property)

 	(business.manufacturers.components.submersibles.SubmersiblePump property)

 	(business.manufacturers.components.submersibles.SubmersiblePumpDesign property)

 	(business.station.feeder.FeederBaseMixin property)

 	(business.station.riser.RiserDesign property)

 	(business.station.solvers.base.StationMixin property)

 	
 	WATERFLOW_UNITS (in module business.helpers.units)

 	Watermain (class in business.commons.watermains)

 	WatermainCheck (class in business.commons.watermains)

 	WatermainDesign (class in business.commons.watermains)

 	WatermainMixin (class in business.commons.watermains)

 	WaterSystemIsNotATree

 	wizard_step_0() (in module uxwizard.views.gravity.check)

 	(in module uxwizard.views.gravity.design)

 	(in module uxwizard.views.station.check)

 	(in module uxwizard.views.station.design)

 	working_condition (business.manufacturers.catalogs.pipes.BasePipePool attribute)

 	(business.manufacturers.catalogs.submersibles.SubmersiblePool attribute)

 	working_condition() (business.manufacturers.catalogs.pipes.BasePipePool property)

 	(business.manufacturers.catalogs.submersibles.SubmersiblePool property)

 	working_conditions() (business.manufacturers.components.engines.EngineCheck property)

 	(business.manufacturers.components.progressives.Column method)

 	(business.manufacturers.components.progressives.Column property)

X

 	
 	x_axis_coordinates_array (business.commons.energy.PlotBaseEnergyProfileMixin attribute)

 	x_axis_coordinates_array() (business.commons.energy.BaseEnergyProfileMixin property)

 	
 	xxx (business.station.arrangements.check.StationCheck attribute)

 	xxx_repr() (business.gravity.stretches.Subtrunk property)

Y

 	
 	y_axis_coordinates_array (business.commons.energy.PlotBaseEnergyProfileMixin attribute)

 	y_axis_coordinates_array() (business.commons.energy.BaseEnergyProfileMixin property)

 	
 	yield_all_pipes_by_optimal_flow_speed() (business.manufacturers.catalogs.pipes.ShortFeederSelectionMixin method)

 	yield_integer (business.station.plots.PlotClimbStretchMixin attribute)

 	yield_single_diameter_solution() (business.station.riser.RiserDesign property)

Z

 	
 	ZoneDesignReport (class in business.gravity.views.definitions)

 	
 	ZoningMixin (class in business.gravity.mixins.zoning)

 dici dei 4 fattori di google wave

nella sezione have added value poi dire che facciamo un plug dell’algoritmo delle coroutines di gravity.design ma che ogni altro algoritmo puo essge ‘plugged in’

questa sezione ‘conttributors.*.rst’ conterrà come da django CMS i documenti:
* per la politica dei pull
* per discutere cosa fare di ruralwater
*

core.constants package

Important

These are the keys of the json produced by ‘persistence’
Likewise, these are the kwargs used by ‘business.interface’ to decode the json.

Submodules

core.constants.arrangements module

core.constants.civil module

core.constants.demand module

core.constants.design module

core.constants.dirs module

core.constants.groundwater module

core.constants.pipeworks module

core.constants.soils module

core.constants.topography module

core.constants.topology module

core.constants.treatment module

core.constants.trunks module

core.enumerations package

Submodules

core.enumerations.linprog module

	
class core.enumerations.linprog.SimplexFailuresEnumerator(value)

	Bases: enum.Enum

An enumeration.

	
EXCESSIVELY_CONCAVE_HILLSLOPE = "The land is too hilly (concave, deep) to find a solution that works fine. The pipes cannot sustain the pressure in the bottom of the deep valleys. The risk is that they will break and/or leak soon. The risk is to have 'air locks' that will prevent the water supply system to work properly.You need to change the path of the pipes or to investigate the the pipes manufacturers if they have stronger pipes."

	

	
EXCESSIVELY_CONVEX_HILLSLOPE = "The land is too hilly (convex) to find a solution that works fine. The risk is to have 'air locks' that will prevent the water supply system to work properly.You need to put a break pressure tank in the convex portion of the hillslope."

	

	
FLAT_SLOPE = 'The land is too flat to convey the desired amount of water by gravity alone. You need to find pipes of larger bore from the manufacturers.'

	

	
STEEP_SLOPE = 'The land is too steep to convey the desired amount of water by gravity without excessive water speed. You need to find pipes of smaller bore from the manufacturers.'

	

	
UNEXPECTED_NUMERICAL_ISSUE = 'There was an unexpected error in the mathematical calculations. Try to run the design process again and, if the problem persists contact the site administrator'

	

core.services package

Submodules

core.services.caches module

Provide requests, with a Cache implemented by redis.

	
exception core.services.caches.MapquestStatusCodeError

	Bases: Exception

The mapquest elevation service returned a status code other than 200.

	
class core.services.caches.RedisClient(*args, **kwargs)

	Bases: object

	
property redis

	

	
core.services.caches.query_api(api_uri: str) → Dict

	Return the content available at api_uri.

	
core.services.caches.query_api_immediately(api_uri: str)

	Return the api query, but avoid use of cache.

	
core.services.caches.query_api_or_read_cache(api_uri: str) → Dict

	Return the content available at api_uri, fetching first from the cache.

If api_uri is not found in the cache, attempt a connection
based on api_uri. If unsuccessful, handles gracefully.

core.services.mapquest module

	
core.services.mapquest.get_mapquest_formatted_string(coordinates_list)

	

core.settings package

Submodules

core.settings.csv module

core.settings.mapquest module

core.settings.persistence module

core.settings.redis module

core.utils package

Submodules

core.utils.patterns module

Collection of utilities for generic use.

	
class core.utils.patterns.Singleton

	Bases: type

	
class core.utils.patterns.classproperty(f)

	Bases: object

Allows using @property on @classmethod.

The caveat is that you can’t use this for writable properties.
Ref.: how-to-make-a-class-property

core.utils.topography module

	
class core.utils.topography.PointCoordinates(latitude, longitude)

	Bases: tuple

Represent a point on the earth surface, identified by its latitude and longitude.

	
property latitude

	Alias for field number 0

	
property longitude

	Alias for field number 1

	
core.utils.topography.eval_distance_between_two_points(from_point, to_point)

	Return the linear distance between two points.

Evaluates the distance according to Haversine formula.
This formula provides enough precision for hydraulic calculations.

	
core.utils.topography.generate_equidistant_points(upstream_point, downstream_point, parts)

	

	
core.utils.topography.get_mapquest_json_response(point_list)

	

core package

Collection of constants , enumerators and utilities shared by the
‘business logic’ and by the ‘data persistence (the database)’

Subpackages

	core.constants package

	core.enumerations package

	core.services package

	core.settings package

	core.utils package

The javascript documentation

Civil

Powertrain

Commons

Demand

Area

Gravity

Station

Geography

Soil

Groundwater

Drawdown

Pipework

main?

Conduit

Plants

Area

Proposals

Gallery

Proposals - Gravity

main

Check

Design

Resume

Sandbox

Proposals - Station

main

Check

Design

Resume

Sandbox

Topology

Layout editor

Layout widget

Ux wizard

Controller.commands

core

	core package

uxwizard.tests package

Submodules

uxwizard.tests.acceptance module

	
class uxwizard.tests.acceptance.GravityCheckWizardTest(methodName='runTest')

	Bases: django.contrib.staticfiles.testing.StaticLiveServerTestCase

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
classmethod tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

	
test_wizard_is_shown_and_then()

	

uxwizard.tests.app module

uxwizard.tests.models module

uxwizard.tests.utils module

uxwizard.tests.views module

	
class uxwizard.tests.views.TestGravityCheckUxwizardForm(methodName='runTest')

	Bases: django.test.testcases.TestCase

CLOSING: this is the typical test to be peformed,
reference: https://www.valentinog.com/blog/testing-django/
<data> must import fake_data from the js
This structuer to be repeated to all 4 cases
perhaps with sub-tests
perhaps with common init for the repeated response = self.client.get in several defs within a class

I THINK A CLASS IS DEFINED BY A COMMON SET OF INIT-TEST DEFS

Also, adopt ‘reverse’ (www.valentinog.com/ reference) to avoid writing ‘raw’ urls

	
test_server_can_send_hydraulic_data()

	

	
class uxwizard.tests.views.TestGravityDesignUxwizardForm(methodName='runTest')

	Bases: django.test.testcases.TestCase

	
test_server_can_send_hydraulic_data()

	

	
class uxwizard.tests.views.TestStationCheckUxwizardForm(methodName='runTest')

	Bases: django.test.testcases.TestCase

	
test_server_can_send_hydraulic_data()

	

	
class uxwizard.tests.views.TestStationDesignUxwizardForm(methodName='runTest')

	Bases: django.test.testcases.TestCase

	
test_server_can_send_hydraulic_data()

	

	
class uxwizard.tests.views.TestWizardsSplash(methodName='runTest')

	Bases: django.test.testcases.TestCase

	
test_can_show_splash()

	

	
test_splash_html()

	

uxwizard.urls.gravity package

Submodules

uxwizard.urls.gravity.base module

uxwizard.urls.gravity.check module

uxwizard.urls.gravity.design module

uxwizard.urls.station package

Submodules

uxwizard.urls.station.base module

uxwizard.urls.station.check module

uxwizard.urls.station.design module

uxwizard.urls package

Subpackages

	uxwizard.urls.gravity package
	Submodules

	uxwizard.urls.gravity.base module

	uxwizard.urls.gravity.check module

	uxwizard.urls.gravity.design module

	uxwizard.urls.station package
	Submodules

	uxwizard.urls.station.base module

	uxwizard.urls.station.check module

	uxwizard.urls.station.design module

Submodules

uxwizard.urls.splash module

uxwizard.views.gravity package

Submodules

uxwizard.views.gravity.base module

	
uxwizard.views.gravity.base.get_area_geographical_name(sites_set)

	Return the geographical name of the area identified by the sites.

	Parameters

	sites_list (List[latitude : float, longitude : float]) – the list if sites; each site must have defined its coordinates,
defined in decimal (as opposed to ‘DMS’).

	Returns

	the name of geographical location of the barycenter,
as reported in the ‘nominatim’ database.

	Return type

	string

	
uxwizard.views.gravity.base.get_barycenter_of_coordinates(sites_set)

	Return the barycenter of the sites.

	Parameters

	sites_list (List[latitude : float, longitude : float]) – the list if sites; each site must have defined its coordinates,
defined in decimal (as opposed to ‘DMS’).

	Returns

	tuple(latitude – the latitude and longitude of the barycenter of the sites_set.

	Return type

	float, longitude : float)

	
uxwizard.views.gravity.base.get_intake_elevation(request: django.http.request.HttpRequest) → int

	

	
uxwizard.views.gravity.base.get_pathway_points_list(pathway_dict: Dict, sites_dict: Dict[str, Dict]) → Tuple[core.utils.topography.PointCoordinates]

	

	
uxwizard.views.gravity.base.get_pathways_list(request: django.http.request.HttpRequest) → List[Dict]

	

	
uxwizard.views.gravity.base.get_sites_list(request: django.http.request.HttpRequest) → List[Dict]

	

	
uxwizard.views.gravity.base.get_step_0_context(request: django.http.request.HttpRequest) → Dict

	

uxwizard.views.gravity.check module

	
uxwizard.views.gravity.check.CREATE_AS_CASESTUDY_INPUT = True

	Prescribes whether the input data to business should be serialized for use in tests.

	
uxwizard.views.gravity.check.do_get_step_0(request: django.http.request.HttpRequest) → django.http.response.HttpResponse

	

	
uxwizard.views.gravity.check.do_post_step_0(request: django.http.request.HttpRequest) → str

	

	
uxwizard.views.gravity.check.get_pipework_dict(request: django.http.request.HttpRequest) → Dict

	

	
uxwizard.views.gravity.check.init_wizard_session(request: django.http.request.HttpRequest) → django.http.response.HttpResponseRedirect

	A placeholder function to make redirects more self-descriptive.

This is the redirection:
* “wizard_splash” redirects to “wizard_gravity_check_start”
* “wizard_gravity_check_start” redirects to “wizard_gravity_check_step_0”

	
uxwizard.views.gravity.check.wizard_step_0(request: django.http.request.HttpRequest) → Union[django.http.response.HttpResponse, django.http.response.JsonResponse]

	

uxwizard.views.gravity.design module

	
uxwizard.views.gravity.design.CREATE_AS_CASESTUDY_INPUT = True

	Prescribes whether the input data to business should be serialized for use in tests.

	
uxwizard.views.gravity.design.do_get_step_0(request: django.http.request.HttpRequest) → django.http.response.HttpResponse

	

	
uxwizard.views.gravity.design.do_post_step_0(request: django.http.request.HttpRequest) → str

	Convert demand values from strings (originated in json) to itneger.
Precondition: the user itnerface ensures that demand data may be
casted to integer.

	
uxwizard.views.gravity.design.get_daily_demands_dict(request: django.http.request.HttpRequest) → Dict

	

	
uxwizard.views.gravity.design.init_wizard_session(request: django.http.request.HttpRequest) → django.http.response.HttpResponseRedirect

	A placeholder function to make redirects more self-descriptive.

This is the redirection:
* “wizard_splash” redirects to “wizard_gravity_design_start”
* “wizard_gravity_design_start” redirects to “wizard_gravity_design_step_0”

	
uxwizard.views.gravity.design.wizard_step_0(request: django.http.request.HttpRequest) → Union[django.http.response.HttpResponse, django.http.response.JsonResponse]

	

uxwizard.views.station package

Submodules

uxwizard.views.station.base module

	
uxwizard.views.station.base.get_area_geographical_name(sites_set)

	Return the geographical name of the area identified by the sites.

	Parameters

	sites_list (List[latitude : float, longitude : float]) – the list if sites; each site must have defined its coordinates,
defined in decimal (as opposed to ‘DMS’).

	Returns

	the name of geographical location of the barycenter,
as reported in the ‘nominatim’ database.

	Return type

	string

	
uxwizard.views.station.base.get_barycenter_of_coordinates(sites_set)

	Return the barycenter of the sites.

	Parameters

	sites_list (List[latitude : float, longitude : float]) – the list if sites; each site must have defined its coordinates,
defined in decimal (as opposed to ‘DMS’).

	Returns

	tuple(latitude – the latitude and longitude of the barycenter of the sites_set.

	Return type

	float, longitude : float)

	
uxwizard.views.station.base.get_drawdowns_list(request)

	

	
uxwizard.views.station.base.get_intake_elevation(request)

	

	
uxwizard.views.station.base.get_pathway_points_list(pathway_dict, sites_dict)

	

	
uxwizard.views.station.base.get_pathways_list(request)

	

	
uxwizard.views.station.base.get_powertrain_electric(request)

	

	
uxwizard.views.station.base.get_powertrain_electricless(request)

	

	
uxwizard.views.station.base.get_sites_list(request)

	

	
uxwizard.views.station.base.get_step_0_context(request)

	

uxwizard.views.station.check module

	
uxwizard.views.station.check.CREATE_AS_CASESTUDY_INPUT = True

	Prescribes whether the input data to business should be serialized for use in tests.

	
uxwizard.views.station.check.get_pipework_dict(request)

	

	
uxwizard.views.station.check.init_wizard_session(request)

	A placeholder function to make redirects more self-descriptive.

This is the redirection:
* “wizard_splash” redirects to “wizard_station_check_start”
* “wizard_station_check_start” redirects to “wizard_station_check_step_0”

	
uxwizard.views.station.check.wizard_step_0(request)

	Process get and post for the station.check form.

If the method is GET then load a fresh form inclusive of all data
to allow the user draw interactively the station on a leaflet map.

If the method is POST then the request comes from ajax and the response
solves the hydraulic check problem (using ‘ruralwater’ business logic)
and presents its outcome in html format, returned as a json-repsonse.

uxwizard.views.station.design module

	
uxwizard.views.station.design.CREATE_AS_CASESTUDY_INPUT = True

	Prescribes whether the input data to business should be serialized for use in tests.

	
uxwizard.views.station.design.do_get_step_0(request)

	

	
uxwizard.views.station.design.do_post_step_0(request)

	

	
uxwizard.views.station.design.get_daily_demands_dict(request)

	

	
uxwizard.views.station.design.init_wizard_session(request)

	A placeholder function to make redirects more self-descriptive.

This is the redirection:
* “wizard_splash” redirects to “wizard_station_design_start”
* “wizard_station_design_start” redirects to “wizard_station_design_step_0”

	
uxwizard.views.station.design.wizard_step_0(request)

	

uxwizard.views package

Subpackages

	uxwizard.views.gravity package
	Submodules

	uxwizard.views.gravity.base module

	uxwizard.views.gravity.check module

	uxwizard.views.gravity.design module

	uxwizard.views.station package
	Submodules

	uxwizard.views.station.base module

	uxwizard.views.station.check module

	uxwizard.views.station.design module

Submodules

uxwizard.views.splash module

	
uxwizard.views.splash.splash_flatpage(request: django.http.request.HttpRequest) → django.http.response.HttpResponse

	

uxwizard package

Allow the software designer to define the user interface hosting the ‘wizards’.

Subpackages

	uxwizard.tests package
	Submodules

	uxwizard.tests.acceptance module

	uxwizard.tests.app module

	uxwizard.tests.models module

	uxwizard.tests.utils module

	uxwizard.tests.views module

	uxwizard.urls package
	Subpackages
	uxwizard.urls.gravity package
	Submodules

	uxwizard.urls.gravity.base module

	uxwizard.urls.gravity.check module

	uxwizard.urls.gravity.design module

	uxwizard.urls.station package
	Submodules

	uxwizard.urls.station.base module

	uxwizard.urls.station.check module

	uxwizard.urls.station.design module

	Submodules

	uxwizard.urls.splash module

	uxwizard.views package
	Subpackages
	uxwizard.views.gravity package
	Submodules

	uxwizard.views.gravity.base module

	uxwizard.views.gravity.check module

	uxwizard.views.gravity.design module

	uxwizard.views.station package
	Submodules

	uxwizard.views.station.base module

	uxwizard.views.station.check module

	uxwizard.views.station.design module

	Submodules

	uxwizard.views.splash module

Submodules

uxwizard.apps module

	
class uxwizard.apps.UxwizardConfig(app_name, app_module)

	Bases: django.apps.config.AppConfig

	
name = 'uxwizard'

	

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Indices and tables

 		
 Ruralwater

 		
 Purpose of the project

 		
 Motivation

 		
 Related

 		
 How to install ‘ruralwater’ on your local machine

 		
 Contributing

 		
 Current status of the project

 		
 Tech/framework used

 		
 Tests

 		
 Authors

 		
 Manual

 		
 The hydraulic problem

 		
 The computer software algorithm

 		
 business package

 		
 Modules

 		
 Subpackages

 		
 business.commons package

 		
 business.gravity package

 		
 business.groundwater package

 		
 business.helpers package

 		
 business.interface package

 		
 business.manufacturers package

 		
 business.station package

 		
 business.tests package

 		
 Submodules

 		
 business.loggers module

 		
 Functions

